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Abstract. J/v and 1" decays to mesons are a good place to look for glueballs, hybrids and for extracting
strange and non-strange components in mesons. Abundant J/1) and v’ events have been collected at the
Beijing Electron Positron Collider (BEPC). More data will be collected at upgraded BEPC and CLEO-C.
Here we provide explicit PWA formulae for many interesting channels in the covariant tensor formalism.

PACS. 13.20.Gd Leptonic, semileptonic, and radiative decays of mesons: Decays of J/¢, 1", and other
quarkonia — 13.25.Gv Hadronic decays of mesons: Decays of J/v, T, and other quarkonia — 13.66.Bc

Hadron production in e~ e™

1 Introduction

High-statistics data have appeared from BES for J/v de-
cays and will soon be available also for 1)’ decays. Further
high-statistics data are expected from CLEO [1]. It is con-
venient to have a uniform approach to partial-wave anal-
yses. Here we provide one such approach using the covari-
ant tensor formalism. A similar approach has been used
in analyzing other reactions [2—4]. We provide formulae
documenting those which have been used for a number of
channels already published by BES [5-9] and extend them
to further channels being prepared for publication. This
list of reactions is not exhaustive, but formulae are readily
extended to other cases following the same methods.

Reactions fall into two categories: non-radiative de-
cays, where final-state particles are pions or kaons; all po-
larization information is then available in the form of an-
gular distributions. Reactions of this type are discussed in
sect. 2. This formalism extends also to final states contain-
ing w, where polarization information is measured fully
by the decay w — w7~ 7. The second class of reactions
consists of radiative decays, e.g. J/¢ — yrTw~. For this
class, differential cross-sections need to be summed over
the unmeasured helicities of the photon, incorporating the
knowledge that the photon is transverse. These reactions
are considered in sect. 3.

% e-mail: zoubs@mail.ihep.ac.cn

interactions — 11.80.Et Partial-wave analysis

2 Formalism for 1) non-radiative decay to
mesons

The general form for the decay amplitude of a vector me-
son 1 with spin projection m is
i

A=, (m)A" =
where 1,,(m) is the polarization vector of ; U/ is the
i-th partial-wave amplitude with coupling strength deter-
mined by a complex parameter A;. The polarization vector
satisfies

5 Pl
>t (m)g™ (m) = —g" + ;f: —3" (py).  (2)
m=1

For 1) production from eTe™ annihilation, the electrons
are highly relativistic, with the result that J, = 4+1. If we
take the beam direction to be the z-axis, this limits m to 1
and 2, i.e. components along x and y. Then the differential
cross-section for the decay to an n-body final state is

Y (M)A (3)

do (27
do,, 2M¢, 2 Z Y

where M, is the mass of ¢ and d®,, is the standard ele-
ment of the n-body phase space given by

Zp’ H 27r 32E )

AP, (py;p1,- - pn) = 6*(p
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1(Qabe) =1 55— (14)
abc
a c 5 15
Q ’ \/Q be + SQach% + QQg ( )
277
a c 5 16
Q ’ \/Q be + 6Qab6Q2 + 45Qaché + 225@8 ( )
12746

Qab(‘ 6 g - (17)

abc + 1OQabcCQO + 135Qach0 + 1575Qach0 + 11025Q0
Likewise ¢®) is constructed to be traceless. Qqpe is the

Note that magnitude of py or p. in the rest system of a, where

m) = 6 (6p1 + Op2) (5)

2
D Wulm
m=1

so we have

2
do _ %ZA/LA*/L —

do,
SSRGS Ey, O
0,J

where

Py = P; = A4, (7)

2
1 "
Fij = Ff =5 > ULU". (8)

We construct the partial-wave amplitudes U in the
covariant Rarita-Schwinger tensor formalism [10]. As in
ref. [11], we use the pure-orbital-angular-momentum co-

variant tensors E,S?.., u, and the covariant spin wave func-
tions ¢,....s together with the operators g,., €20 and
the momenta of parent particles. For a process a — bc,
the covariant tensors fﬁll)... u, for final states of pure orbital
angular momentum [ are constructed from the relevant

momenta pg, pp and p. [11]:

tN(O) _ 1) (9)
£ = G (Pa)r” B1(Qave) = 7 B1(Quae),

B = By — 36+ D () Ba( Q)

£(3 I -
Fin = [Fuufs = 5 (7 ) (G (pa)

“v‘gu)\(pa)fu + gz\u(pa)":ll)]B3(Qabc)a (12)

with » = py — p.. The term (7 - 7) is the dot-product of 4-
vectors: Torg — 7171 — ToTo — 373, and makes fﬁ) traceless.

2 (50 + 86— 5¢)

= - 13
abc 43a Sb ( )
with s, = E2 — p2. Then f,ﬁ?.um contains the angular dis-
tribution function multiplied by a Blatt-Weisskopf barrier
factor [11,12] Q% . Bi(Qabe). Explicitly

see equations (14)—(17) above
Here Qg is a hadron “scale” parameter @y =

0.197321/R GeV/c, where R is the radius of the centrifu-
gal barrier in fm. We remark that in these Blatt-Weisskopf
factors, the approximation is made that the centrifugal
barrier may be replaced by a square well of radius R.

If a is an intermediate resonance decaying into bc,
one needs to introduce into the amplitude a Breit-Wigner

propagator denoted by f((;c))

1

— Spe — 1Myl

f(bc) ; (18)

here sp. = (pp + pe)? is the invariant mass-squared of b
and ¢; mg, I, are the resonance mass and width.

We outline now some further general features of nota-
tion, taking as an example the two-step process J/¢ —
pP1273, p12 — mime. In the first step we denote the orbital
angular momentum by L; in this example L = 1. In the
second step, we denote the orbital angular momentum by
¢, which is again 1 in this case. The tensor describing the
first step will be denoted by T,flL) ur- The tensor describ-

ing the second step will be denoted by E,S?.. - The orbital
angular momentum is constructed in terms of relative mo-
menta, so it is convenient to define q(;;) = p; — p;-

Some expressions depend also on the total momentum
of the ij pair: p(;;) = pi + p;. When one wants to com-
bine two angular momenta (j, and j.) into a total angular
momentum jg, if j, + j» + je is an odd number, then a
combination €,,xopl, With p, the momentum of the par-
ent particle, is needed; otherwise it is not needed.

Projection operators will be a useful general tool in
constructing expressions. For a meson a with spin S and
corresponding spin wave function ¢y, ...,.s (Pa, m), what we
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usually need to use in constructing amplitudes is its spin

et (9) )
projection operator Pulmusu’lmu’s (pa):

1 *
) (pa,) :Z (b/t(pa? m)(bp/ (pa7 m) =
mpa pa ' -
—Gup + S = —Gup’ (pa)7 (19)
HVH v’ Z¢MV Pa,m ’(pavm) =

1 1.

§(guu’guu’ + g;u/guu/) - gguugu’l/’v (20)
3

PIEV)AH B\ pa Z d)ul/A Da,m :U' B\ (p(“ m) =

1. . - - O
—E(QW'QW’QM' + Gup' o' Gav’ + Guv' Gup GAN

+guu’gw\’g>\u’ + guk’guu’gku' + guk’guu’g)\u')
15 (g/wgu u’g/\)\’ + g;wgu’)\’g)\u + g;wgu’)\’g/\u
F9urgw x Guvr + GuaGu v Gux' + GurGur v Guw

+gu)\§z/’)\’gup/ + gu)\gp’u’gp/\’ + gu)\gp’/\’guu’)a (21)
4
P;EV)AJ;L V' N ol pa Z (buu)\a Pa, ™M P« U\ o (pa, m) =
1
24 [g,u,u’gyu’gA)\/gao’ + -
(i, V', N, o’ permutation, 24 terms)]
1 . . I
Y (9w Gprv Gax Joor + -+
(i, v, A, o permutation,
w' V' N o' permutation, 72 terms)]
1, . . I
+ﬁ(gw/g)\a + JurGvo + gutfgu)\)
. (Qunga’ + Gy Guor + gu/o,g,,,,\/) . (22)
Note that
L L ’ !
tlgl) nr — ( )LP( ) Lt 7’“1 o 'TMLBL(Qabc)- (23)

We come now to specific examples of reactions.

219 —» ntn— =0

For three isospin-1 particles coupling to an isospin-zero
particle, the only possible coupling for isospin conserva-
tion is (I; x Iy) - I3, which is fully anti-symmetric in par-
ticles 1, 2, 3. This demands that the angular dependent
part should also be fully anti-symmetric for particles 1,
2, 3, in order to make the overall amplitude symmetric.
For ¢ — w7~ x®, any two pions are limited to an over-
all isospin 1 and hence can only be negative-parity states
with J odd, i.e., JE =17,37, 5"

For ¢ — p(17)m — wr 7~ 7%, + decays to pr in a P-
wave; then p decays to mm also in a P-wave, hence the

539
amplitude for the two-step process is
Drz(DA
Uﬁ = (Il X 12) I3 Gul//\apd;T((pg (12)) f(fg))
+(1 < 3)+ (2 3)
= di€uro D PIDS B1(Q¢p3)f((f2))Bl(Qp12)

+B1(Qup2) f({3)B1(Qp13)
+B1(Qupn) S 53 B (Qpes) . (24)
Here we use the convention I = (\_/—%, \_/—%,0) for 7+, I, =

(L 75 \_/%, 0) for 7~
(Il X 12) 13 = —1.

The amplitude can be further simplified in the 1 rest
system as

and I3 = (0,0,1) for 7% This gives

U“ = 42M1b6uu>\0p1p2 Bl(prd)f 12)BI(QP12)
+31(pr2)f(13)Bl(Qp13)

+B (prl)f 23) Bl(QP23) (25)

For any other 1~ intermediate state p’, one can get the
corresponding amplitude by simply replacing the Breit-
Wigner component f(») by f(pl).

For ¢y — p3(37)m — atm~ 70, 4 decays to psm in
an F-wave; then ps decays to 7wm also in an F-wave; the
amplitude is

U;’}; :(Il x 12) I3 Elw)\opr(S)VaB (3)/\ f(ﬂs)

(p33) “(12)apB "/ (12)
+(1 = 3)+(2<3)
. (3)vaBz(3)A (p3)
= 7Z€,uy)\¢7p1/) [T(p33)a t (12)ap f(lp;
~(1-3)—(2<3). (26)

Similarly, for 1 — p5(5~ )7 — 77~ 7%, the amplitude
should be

o F(5)vapisz ()

o P )
U/§5 - (p53) (12)aﬁy5f 125)

(It x I2) - I3 €uunopy,
+(1<3)+(2<3)

- (5)vaBrs 7 (5)
Tiovsy” " L ipretns

(2 < 3)].

f(ﬁ5)

—i€uao Dy (12)

—(1+3) - (27)

If one considers a small isospin symmetry-breaking ef-
fect, a free parameter can be multiplied by the term cor-
responding to the p® intermediate state.

2.2 — KTK— 70

This channel is similar to 7t7—7%. However, we now
need to consider resonances for both K7 and KTK~
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subsystems. Numbering K+, K—, 7° as particle 1, 2, 3,
the possible partial-wave amphtudes are the followmg

U;‘, =€unaP D313 B (pr’S)f 12)B1 (Qp12), (28)

Ul = ot T i - 1(15). (29)

Uty =€unoti Ty T s f(15): (30)
Ul = €uuroD{p2p5 [Bl(QwK*Q)f(lg) B1(Qk-13)

+Bl(quK*l)f((QI;;)Bl(QK*QB)}v (31)

Uz’ég = €uvraly [T((I?)Vz(;ﬁt(fﬁz/\ag f(13) -l 2)} , (32)

U}%g = €uroly {T(g)g)ww <(153)>Aa575f<13 -l 2)} -(33)

23y — ¢t~ — KTK—ntn—

For this channel, ¢ is reconstructed from two kaons; most
possible intermediate states are ¢ plus an isospin-zero res-
onance, fo or fo, which decays into two pions. The fy4 is
unlikely to be produced, because the i mass is not far
from the ¢ fy threshold and the decay requires L = 2 be-
tween ¢ and fy, hence a strong centrifugal barrier. For
1 — ¢f; in an orbital-angular-momentum L state, the
conservation of the total angular momentum requires

Sy =S+L, (34)
where

S=S,+J. (35)

In the following, we use the notation (¢f;|LS) to denote
the corresponding partial-wave amplitude U/*. We number
the KT, K=, m*, m~ as particle 1, 2, 3, 4, respectively.
Then we have two independent partial-wave amplitudes
for each f production. In the general formalism, they may
be written

(6£0/01) =201 £ £ (36)
(ofol2t) =T T 1N 1. (37)

For the very narrow ¢ resonance, the ¢ = 1 centrifugal
barrier factor for the ¢ decay has a negligible effect on the
¢ line-shape and can be dropped. The expression for tg);)‘

simplifies to

D _ oz _
thzy =™ = 0
In the last step, we use the fact that KT and K~ have
equal masses. Then egs. (36) and (37) become
_ (4)
<¢f0 |01> - q?12)f(12)f(34) ) (38)
(6£0]21) =7 4120 Ba(Quipso) [y F A (39)
where 7" is the L = 2 operator,
=gt q” L " 40
T = da9i2) — g(Q(m) 'Q(12))9 ( )
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For each f5 production, there are five independent par-
tial waves, which we retain in their general form:

2 u
(0 fa100) =G0 1 i £, (41)
2)paz(2) (l)y (f2)
(9f2(21) = T(qsff) t(34 Yav (12) f(lz)f(3z (42)
2)A
<¢f2|22>_€uampwa (Ep; )5[6%01’ ((342)
7@ (Vv £(6)
+€§)\ou (34),‘/]]?11,75(12) f(lg)f(34)7 (43)
afyév (2) 7(2) (1) (f2)
(02[23) = PO (pu)T 2 TGy st i F38)
(44)
@prrar(1) 7(2) (f2)
(0f2143) =T 2!} t(12)ut(34)/\of(12)f(32)' (45)

There is no established resonance decaying into ¢m.
However, there are speculations about (sSqq) four-quark
states which could decay to ¢m. So, here we also give some
partial-wave amplitudes for ¢y — X7 with the intermedi-
ate resonance X further decaying to ¢w. For X being a
p'(177) state, there is only one independent amplitude
since both ¢ — p'm and p’ — ¢m are limited to a P-wave:

_ (DB _~soA () ( )
Ul =2 | T €7 Pust sy o Liand i /b
(18 oo, (1) £(D)
G pust G TS 15| - (46)

For X being a b;(177) state, there are four independent
amplitudes since both ¢ — b7 and by — ¢ can have
both S and D waves:

~ v (1) (b1)

gulzs)t(m)uf(m)f 1&3)

(1) (¢) £(b1)
Jr9(124) a2y (12)f(124)>

Up,ss =

(47)
7 (2)uv (9) £(b1)
Ubisp = tios) (12)1,f(12)f(1§3)
(2) Vi (b1)

+t(¢>4“ (12)uf(12)f 124)> (48)

(¢) £(b1)
(b14) 9(123)/\1/ (12 f(12)f 153)

UlﬁDs =
F(2)uA O (b1)

153y G2t (12) f(12)f(1§4),

— 7@pArz@) Qv (b1)

Ujpp = T(blzf) (#3)al(12) f(12)f (123)

@pArz(@) )y (b1)
T(bllg) (¢4)Av (12) f12)f(1§4)'

2.4 ¢ —» wKTK™ - 7ta—n'KtK—

The formulae for this channel are quite similar to those
in the previous subsection for v — ¢r+7~. If we number
7, 7t r=, KT, K~ as 0, 1, 2, 3, 4, then we can get
corresponding partial-wave amplitudes by simply replac-
F(Dp .

ing t(12)
defined as
wh =€\ pipyp] |:Bl (Qup0) £({2) B1(Qp12)
+31(pr2)f((1p3)31(@p10)
+B1(Qup ) fs0, B1(Qp20)

and replacing f(12)) by f(((i)z)'

in equations of the previous subsection by w*

(51)
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259 — Kta~ K-t

Welabel K™, 77, K—, 7" as 1, 2, 3, 4. For pag and pas in-
termediate states, the formulae are the same as for ¢ fo and
¢ f2 intermediate states with a trivial exchange between pi-
ons and kaons. For KK* — (KK*r or KpK), or wp/ —
K* K intermediate states, the formulae are the same as for
the mp’ — wém intermediate state with proper recombina-
tion of particles. For KK{ — (KK*7 or KpK) intermedi-
ate states, the formulae are the same as for the 7b; — wom
intermediate state with proper recombination of particles.
So all the formulae given in the subsection on ¢nT 7~ may
be applied here. In addition, there are many more possible
intermediate states. We list additional formulae for some
obvious large intermediate states. Note that a resonance
with negative C-parity decays to K7 f( * with a relative

minus sign to its charge conjugate state K LG

(K K100y =100 s Py — TG s FY. (52)
(KK [21) :T&Q)lf(u oy [F i )
*{((;i)uf(ﬁ) )f(g) )] (53)
(K Kglony =i 5 il £ £
_t((122))W ((;i)yf(m) f(% ) (54)
(K" K3[21) = (El)zl)L(a34)) |:t(34)ow~12 f(12 f(34§
i) E U i >}’ (55)

ettt e )5
(K" K3122) =" pyaT (13)30))5

7(2)A i( 7D p(K™) (K3)
: { [EWAJVt(34)6 + €oxow (34)7}1% (12) f (12) [ 34§

Vv ((K*) ((K3)
[67)\01/ (12)6 + €sx0v (( )) }Pw (342 f( )f } (56)

* Tk o 3 paByiv = (2)
(K" K3|23) = PO (p )T 540
(2 (1) 7(2) (1) (K3
[t(34 )8 (12)1/f(12) f(34) 12 )8 (34)uf(34) fa) }
(57)
PHuvro 2(1)  7(2) (K™) ¢(K3)
(K*K3|43)= ((12“)(34)) [t(12)yt(34))\of 12) f (34}
1) 72 (K™) ¢(K3)
_t(34)ut(12))\a'f 34 fae ]’ (58)
( )T
(K3 K 110) = Ti(12)(34) [f(u)f (34) +f34 f(12) (59)
* Tk (1) (2)pv (K3)
(KoK3(12)= T((12)(34))y[ aa) f(12) f4
v (K K
O e 10| (60)
* 7% (3)purA
(Ko K332)= T((12L)L(34))[ (34)mf(12) f(34)
(2)
(12)u,\f(34) f(12) } (61)

541
(K*K*'|10) = (82‘5(34)) ((112))04 ((3142)52
: _f(12)f(34) + f(34 f(12*)/-a (62)
(K™K [11) = D pyacmnapif(i3) sy T((in o)
[ 158 - 1B I (63)
(KK [12) = POmod (p )i T8 T i
[ 150 + 1805 (64)
(K"K [32) = <(5’1)2L§?§4>>t<(112)>»5<(§i)x
[t + 50 155
(65)

Smaller contribution from KKj with K5 — K*m or Kp
and some other intermediate states may also need to be
considered.

269 — ¢ttt - KK ntn—ntn—

As for the ¢ — ¢rtn~ channel, the dominant interme-
diate states are also ¢ fy and ¢f2. The fp-resonances de-
cay to T~ wtw~ usually through oo and pp; and the
fa-resonances decay to 77~ 7 tw~ usually through oo,
pp and f5(1270)0. We assume a similar notation to the
1 — ¢nTn~ case and number the additional 777~ as
particle 5, 6. Then the corresponding partial-wave ampli-
tudes involving f; — oo are

_ 7MW (@) £(fo) | p(o) p(o) (o) ¢(o)
<¢f0|01>(00) t(lQ; f(12 f 2— |:f f(56) + f36)f(45 :| ( )

@ury@)  £(9) (fo)
<¢f0|21>(ao) —T(¢f; (12)l,f(12)fg?,)

(o) (o)
[f 34)f(56 + f(sa)f 45)}» (67)
<¢f |01> T(fQ)MVt (1) f f(f2 (68)
2 (00) (co) ‘“(12)v7(12)/ (60)?
2)pa 1)v
(SF2)21) ooy =TGN TI) Y £ 12, (69)
A
(01212200 =P puaT 0 5 [ 2o TS0
tesrm T PRty S 1, (70)
(6£2128) 5y = PO (p ) T2
(f2) 7 (¢)
T(mf)’yé (12)1/f(12) f(ao)’
(71)
4)pvdo (1)
(6£2143) ) = Ty 1y T T2 s O L) (72)
with
(f2)uw _ f@uv (o) L@ (@)
Tioey = (034056)f(34)f(56) (036045)f(36)f(45)' (73)
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For f; — pp, if we limit pp to a relative | = 0 state, then
the corresponding partial-wave amplitudes are

) o) [ 4(0) (aB7(1)
(01ol01) o) =17 £33 S0 [fp>f<56 )i31) L(56)a8

DD ], (74)
(@fol21) (o =Ty T (fz)wf T F T E S

+f(36)f(45)t((?}6?ﬂt((i5))aﬁ} (75)
(0 F2100) (o) =T T3, 1 éfz))f oo (76)
(DF212) 00 =Tty Tl 12y £ L) (77)
(DF2122) o) =" puaTi ) g [mngj))&

e T |p0E0 T 1) (78)
(6£2123) (pp) = PO ()T 2]

T(;{?))wt((fz) f(({pz) f(f2) (79)
0F2143) o = Tia sy "Einu Toamra (i f - (80)
where
T = PP (py, )[ atatonsln &y
+t((316))a£(45 5136 & o’ (45)} (81)

For fa — f2(1270)0, if we also limit f2(1270)o to the
I = 0 state, then we have the corresponding partial-wave
amplitudes:

(@F2l0) (a0 = TN E LN T (52)
L1200 =T Tty S (e (83)
(0£2122) (5200 =P D0 T 5 [erron T F20
+ fé*ovaf;;)w} Pty Fin ey (89)
(6£2]28) () = POFP (p )T 2
TG st f G Froy (85)
(652143} 120 =T 1 Hin T a0 oy (86)
with
R =
a2 1) + Eas 2 F
H sl 06 ey T Lamand i) S o } (87)

Unlike the ¢ — ¢nT 7~ channel, for ¢ — ¢rtr ntr™ it
is possible to go through 0~ resonances (n*) decaying to
ata~ntw™ through pp. The corresponding partial wave

The European Physical Journal A

is
wo_ _praBi(l) (1)
Upe =1 15, T gm)a

[f(34)f(p) B1(Qp34) Bi(Qp56) BL(@n psapss )

B ((=°[’2)f(‘15>)B1 (Qp36) B1(Qp45) BL(Qn* psopas )} - (88)

Besides partial-wave amplitudes given above, for
mta~a T~ final states, there are many other possible in-
termediate states, such as asm, a1, w(1300)7 etc. Before
performing the partial-wave analysis, one should check
various invariant mass spectra to see what resonances are
present in the data and add the corresponding partial-
wave amplitudes.

pwﬁe'rfr'ynpgpipgpg

3 Formalism for 1) radiative decay to mesons

We denote the 9 polarization four-vector by ¢,,(m1) and
the polarization vector of the photon by e, (ms). Then the
general form for the decay amplitude is

A =1, (my)es(ma) AP = 1, (my)e; (m2) ZAZ'U{W.

(89)
For the photon polarization four-vector e, with photon
momentum ¢, there is the usual Lorentz orthogonality
condition e,q¢” = 0. This is the same as for a massive
vector meson. However, for the photon, there is an ad-
ditional gauge invariance condition. Here we assume the
Coulomb gauge in the 9 rest system, i.e., €,py, = 0. Then
we have [13]
Z€Z(m e qMKV+KMqV
m

= —Guw + K

KK WL

(q K)2 QMQV = _g;,uj (90)

with K = py —q and e, KV =
cross-section is

Z Z% ma)e

ml lmz 1

LS oy

m11

e DI

0. The radiative decay

5 (ma) AP, (my ey (mg) A

(e

DI SRl
RED

Ezpij'Fz‘ja

4,7
(91)
where
12
* w (L) yprspr’
Fij :Fji:_asz 951/ )Uju . (93)
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Due to the special properties (massless and gauge
invariance) of the photon, the number of independent
partial-wave amplitudes for a ¢ radiative decay is smaller
than for the corresponding decay to a massive vector me-
son. For example, for ¢ — ¢ fj, there are two independent
partial-wave amplitudes with orbital angular momentum
L = 0 and 2, respectively, which give different angular
distributions; but for ¥ — «y fy, with the gauge invariance
condition, the two amplitudes will give the same angular
distribution. So, for the i radiative decay, the L-S scheme
is not useful any more for choosing independent ampli-
tudes. One may simply use momenta of the particles to
construct covariant tensor amplitudes; it is sufficient to
check the helicity amplitudes to make sure there is the
right number of independent amplitudes. From the helic-
ity formalism, it is easy to show that there is one inde-
pendent amplitude for ¢ radiative decay to a spin-0 me-
son, two independent amplitudes for v radiative decay to
a spin-1 meson, and three independent amplitudes for v
radiative decay to a meson with spin larger than 1.

3.1 1 radiative decay to two pseudoscalar mesons

We denote the two pseudoscalar mesons as 7+ and 7.
For the decay vertex v — v f, there are two independent
momenta which we choose to be py and the momentum
of the photon ¢. We use these two momenta and the spin
wave functions of the three particles to construct the co-
variant tensor amplitudes.

For 1 — 7 fo, the e, can only contract with ¥* since
eupif} = e,q" = 0; hence there is only one independent
amplitude:

U%] = g flfo), (94)

For v — ~vf2 or ¥ — 7 fa4, €, may contract with 1) or
with the spin wave function of f;. Then ¥* may contract
with e, or g, or the spin wave function of f;; this gives
three independent covariant tensor amplitudes for each

fr

U&32)1:g<f2>uuf<f2> (95)

U2 = 9" PSP Ba(Qung,) FU2, (96)

Ul =€ T 0 Ba(Quoy ) 12, (97)

UL =t Dep Ba(Qun g ) J I, (98)

Ulig2=9" taﬁ%épwpwpwprzx(me)f (), (99)

UL s =" PP py Ba(Qur ) U2 (100)
where

) 7= Zd)mmlw(pfwm)

¢H1 :"LJ(pr7 )Ml' 'T#JBJ(QfJFTF)
PI—LI g py #J(pff)rifll"'rﬁJBJ(QfJ’f”T) (101)

with J = 0, 2; here r, represents the relative momentum
between two pseudoscalar mesons.
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We use py instead of g to contract with t(£7) because
gt 1) = p,/,f(fJ) and py has only a time component in the
1) rest system. This makes the calculation simpler.

32¢ - ynpwta—

This is a three-step process: ¢ — X with X — yz and
y — 7w or y — nm. The amplitudes U}, are listed using

the notation
("€ (y2)iy , (102)

where J, P, C' are the intrinsic spin, parity and C-parity
of the X-particle, respectively. We denote 7, 7—, n as 1,
2, 3, respectively. The possible JP¢ for X are 0=+, 11+,
1=+, 27+ 2% 3%+, 3~F, etc. For invariant mass below
2 GeV, we consider J up to 2. For ¢y — ~vX, we choose
two independent momenta p,, for ¢ and ¢ for the photon
to be contracted with spin wave functions.

For the ¥ — ~0~ T vertex, there is only one indepen-
dent coupling, EMV,\UQ/)“e”qui. With various possible yz

states, we have Uliw for 1 — 70~ — nr T~ as follows:

(O~ F[(fon)1) = SuvB1(Quryx) fi (103)
(40~ F|(agm)1) = SWBl<QW><f§f§; IS, (104)
(YO~ [(fam)1) = SWBl(an,X)f(lf;))t%n Wét((fz))w, (105)
(107 *|(a2m)1) = Sy Br (Qu ) £ T2y s 1)
+fan st } (106)
with Sy, defined as
Suv = €uappa’. (107)

For the ¢ — 17" vertex, there are two independent
couplings for each yz:

(Y| (fom)1) = €uvaspl (Wff{;& (108)
(71| (aom)1) = ewm( Han fos) + o ), (109)
<’Yl++|(fo77)2>:q uﬂt nfo Bz(me)f(fg’)), (110)
(117 (aom)2) = 451 p B2 (Qyr x)
{ o o)+t I ) (111)
YU (om)1) = €uapPE 0T T 2yt F ) (112)
(V1 |(a2m)1) = €uvapp3 35 {((123))75 (iig)f((g)
ot 6 ] (113)
(N (fam)2) = 080505 a2ty ey Bo(Quax) 3,
(114)
(Y17 |(a27)2) = 4S053% Ba(Qurx)
((1232)5'@/’5((22&) f((fef) + t((gg)ﬁ’a’ (as1) f(zg)}
(115)
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o 8
where g = g°» p);px For 1t decaying to fon and

asm, the orbital angular momentum [ could be 1 and 3;

but we ignore the [ = 3 contribution because of the strong
centrifugal barrier.

For ¢ — 1=, the exotic 1~ meson cannot decay
into fon and agm. We have four Uy, amplitudes here:

(Y17 F|(fam)1) = guusvét((nz}’;;t((lg)) f(lfgz))Bl(Qw'yX) (116)

_ 2 o’ 2)8 2
(1 +|(‘127T)1>:9uv575 [t((@);) (1;)crf((f3))

o7(2)
+t<(a£> t((23)0f(23) } Bi(Qyyx),  (117)

_ 2)vo7(2)6
(11 +|(f277)2>ZQuﬁuﬁvéKﬁt((n}Z) t((lz)) f(lfzz))Bl(Qw’vX)
(118)
— 07 (2)6
<'71 +|(a27r)2> qlﬁuﬁyéK [(@;) ( f(13)
2 of 2)0
ot ‘2§>gfé§§§}Bl(me>- (119)

For 1) — 427, there are three independent couplings
and two possible yz states, fon and aom:

A
(V2| (fam)1) = P\ (KPP K1) 00 )
(120)
(v2 | (agm)1) = Wa I P K,
7(1) ( 7(1)
'[t(a21)7(3)5f(23) Far2)( 3)5f(13)} (121)

(V2| (f21)2) = 9P Pl 5 () B2 (Qury x)

(18 7(2)a'B p(f2)
Soa Ktz fa3) (122)
o (2
<v2++|<a2w>2>=gwpapwP§gLﬂ<K> o K7
7 7@l (1) 7(2)a’'A laz)
(a21)5 (23) f( t(azz)at(m) f(1§) B2(Q1MX)7
(123)
2
(Y254 (f21)3) = 0D Pian s (K) Ba (Qu x)
(18 7(2)a'B p(f2)
oa Ktz 03, (124)
2 o
(725 (a27)3) = gy P s (K )€S500 K
F) 7’8 p(an) | 7(1) 720’8 p(az)
(a21)5t(23 f(232) (a22)6 (13) f(132) BZ(Qva)~

(125)
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For 1) — 42~ %, we have

_ 2)
(V2 (fom) D) =€uvaspl s o @y f{ie) Br(Qusx), (126)
< 2_+|(a07r) >:€/J,Voz,6’pqp
2)3 a
{ ((a317f(23) +t a02) f( 0)}%31(@1}7){),

(V27 1 (fom)2) = SyupumPsst 1y £ 1) Bs(Queyx), (128)
(72" *|(aom)2) =

(127)

Sp,t/pw’ypwd

{ ((fgiyéf((%) +t(33;ff(a°)}Bs(waX)a (129)
(V2 F [ (om)3) =quSunE 3 pus f 1) Ba(Qux), (130)
(727 (aom)3) = quSuypys

T Ao + T3 16 } Ba(Qua), (131)
(V27 |(f2m)1) = €pvappiha, PP (K)

B8 5 1) B (Quax) (132)
(v27|(a2m)1) = €uvappt PO (K)q,

B(Quax) g 53 + T o £, (138)
(727 |(fan)2) = Spup by Py (K)

A 1 Ba(Quax), (134)
(27 |(a2m)2) = S, pypt, PG 50 ()

B3 (Qunx)[t ((2233)” f((él:f)) +t(13” f(13)] (135)
(27 |(f2m)3) = 4uSupys PP (K)

t(122)’y 5ff((1f§ Bs(Qu~x), (136)
(v2~ +|(a27f)3>unsuypwép(m""”/‘s/ (K)

'B3(Q‘1’7X)[E((ig)y'(s'f((g??)) (13 '5/f(13)} (137)

with S, defined as in eq. (107).

3.3 ¢ — yKK=

Possible intermediate channels for this process are K* K,
KiK, K5 K, agm, agm. The formulae for K§K, K5 K, agm,
as7 intermediate states to the KK final state are the
same as for the agm, asm, fon, fon intermediate states
given in the previous subsection for the 777 final state.
So, here we only give partial-wave amplitudes Ufw with
K*K intermediate states. We denote K, K, 7 as particle
1,2, 3:

(YO |(K*K)1) =S, B1(Qur x)
(1) (DX (K™) | 7(2) (1)>\ (K™)
[t(K*K)At( 3y f1s)” Tt r-ront2s) fas) } (138)
* 1 1 K*
<71++|(K K)1>:€uuaﬁpw ((zg)ﬁf@s 4'75(113)%0((13))}7
(139)
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(VK K)2) =, S5 Ba(Quo ) (V2| (f20)3) = aup L P s (VB 1) 15
(T 1)+ E 158 (140) - Ba(Quxy) + {1 =3} + {204} + {13 & 204},

- Wy (s (154)
(VITT[(K"K)1) =g Sy6 [t( t(13) f(13)
The amplitudes involving X-particles of JF = 2++

F(Dy 7(1)8 p(K7)
sl e }Bl(me)’ (141)  involve a rank-two tensor, X%, The definition of this is
_ " 1 K* given below:
LK) = oK iy ) (@) P
¥ (UU) o
(( " )t((232) fg;)}Bl(wa). (142)  Xu f12)f(34 By (Qx(12)(39)) Pyryes (K)

“(p(’ Paoy — p(34))(p(12) - p(34)) +{2 < 4}, (155)
X0 = £ 0 151 B1(Qp12) By (Qpsa)

2 Dag(1
'P,Su)a,@(K)t((m)) (3236 +{2 <4}, (156)

349 -yt wta—

Listed here are formulae used in refs. [8,14]:
where the L = 2 decay for X — pp is ignored in view of

(v0~t|pp) = WG/&AJPYngé}pZBl(QmX) the centrifugal barrier suppression. . .
(p) +(p) From the flux tube model for hybrids, 17" hybrids
'{f(u)f Bl(Qp12)Bl(Qp34)Bl (@x(2)34)) with I = 0 decay dominantly into 47 through a;m. Then
) 1 — yrta~nta~ is an ideal place for finding 1=+ hy-
_f(14)f(32)Bl (Qp14) B1(Qp32) B1(Qx 14)(32))] » (143) brids. With high-statistics data at BES and CLEO-C, one
should look for the isoscalar 1=+ hybrid in this channel.
(10" |oo) =g [f(lz)f(o) f(14 f(32)} (144)  Here we add the formulae for the 1-+ hybrid production:
ybrid production:
o+t =0guv . B B
(v lpp) 9u [f 12)f(34)(‘](12) (I(34)) 1(Qp12) 1(Qp34) <71,+| [7‘(&1 (pﬂ')} 1) = guyp¢P(1)(K)
()
+ 1D £ (@) a(52)) B1(Qp14) B1 (Qpa2) (145) a
(14)/ (32)\9(14) " 4( )( r() ) ( ;) } .[P(l)gy(p(ug)) (112) f(lgg)f(p)
<70++|7T7T'(7TU)>=9 o F (15 + £59) .
() ) f){ (123) +P(1)67(p(234)) ((213))»Yf(;342)f(p) }
oy (FG + Fab) + £y (FT) ettt 2ed 1 {l1o3&204),  (157)
(o) (o) -
) + S + 1) (146) (17 [mar(pom) | 2) =g LY (K)
<’70++|7T7T,(7TP)>:9W [f(12;)f(({)2))q(12)a(p3 —paz)” ‘[P(l)m(p(lz?))) (112) f(laglgz)f(p)
(") (o) )
“B1(Qrp3) B1(@p12) + fzan) f(33)4(23) (P2 — P2s)) +P O (D) )T o3 Lo [ ]
*B1(Qrpa) B1(Qp23) + {1 < 3} +{2 < 4} {13+ {24 +{1=3&2-4}.  (158)
Hleo3&20 4}}, (147)
(Y0 |mai (mp)) = g {Po(z,g) (P(123))Pq q(lg)f(f§§ f(fg)) 359 > yKTK=ntn—
1) (a1) £(p) )
B1(Qxa14)B1(Qp2) + Py (p(azay)pt q(23)f234)f23) We construct the amplitudes U/, with a notation sim-
“B1(Qxa,1)B1(Qp23) +{1 < 3} + {2 < 4} ilar to that in the previous subsection for the ¥ —
yrTr~rta~ channel. Here we denote K+, K=, nt, n~
13k 2o 4}}, (148) oo 1. 9.3, 4
(V2| (yy)1) =X, (149)
0 K" K*) = Sersnapl P30303 £ Fns
(2| (y9)2) = 9,030 X Ba(Quixy), (150) oo /= ; ( g? 1B2 (;; (41)4 R
1 x)B1(@k~1
(2 |(yy)3) = 0 X220 Ba(Quixs), (151) oo g 150
@ s “B1(QRr23)B1(Qx(14)(23)) (159)
2 1F2001) = P ()G £ £ (0™ ) = g D 15, (160)
+{1<—>3}+{2<—>4}+{1<—>3&2<—>4} (152) o D
@ (KRR 1) OO KRy =g (13} Fiagyad (1) f<23> ’ (161)
2t PP (K
(27120020 = 9Py Pagsys (KD o) Fi2) fiaa) O KR — o (D) Fa (KT ()
.B2(wa,y)+{1<_)3}+{2<_>4}+{1<_>3&2<_)4}7 <’Y | H>—guu[ (K*R)a”(14) f(14) f(23)

) FMa (K™ e(k)
(153) +t(K*,~c)a (23)af (23) f14)] (162)
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(V| (B K)1) :GuuAaPQGQﬁ”‘SKﬁ

1 1 K* K*
TN ORTTGN) (163)
* Tk ) 1 1
(YITH[(K*K*)2) = quSm€ o Kﬁt((uzh ((292)5
(K™)
f(14) f(23) BQ(Ql[)’yX)a (164)
(YUK R)1) = cuura e px s
7(1) t (K™) (k)
'[t(K*R)'yt(lél)éf(léL f(23)
7(1) (1) (K™) p(r)
Ktz (23) f(14)}’ (165)
(YITH|(K*R)2) = 0uSa€™px s
(1) (1) (r) =(1)
{tu«m sl T + 1 Reryy
(1) (k)
t(23)5f(23) f(14)]B2(QmX)’ (166)

(v2t | (y2)1) =X [, (167)

(V2 (y2)2) = 9030 X Ba(Qypoxy,  (168)

(72" |(y2)3) Q;d%X(y B (Qyx), (169)

(A ) 1) = 28,03 Ba(Quin ), (170)

(AT (y)2) = 9 DS PPP 25 Ba(Q ) (171)

++ _ (yy)

(VAT (yy)3) = 4uZ, PPy P Ba(Quyx),  (172)
<72_+|(K*K*)1A> = GuuaﬁpgAﬂ)\pd)/\Bl(Qw'yX)v (173)
<727+|(K*K*)IB> = e;waﬁprﬁpr)\Bl (Qw'yX)a (174)
(27 |(K*K*)24) = S, AN pyapyo B3(Quqx),  (175)
(V2 T|(K*K*)2B) = 8,,, B> pyspyo B3(Quyx),  (176)
(72 |(K*K*)3A) = 450y A" pys Ba(Qury x), (177)
<727+|(K*K*)3B> = qlzfu'waépwéBS (Qw'yX) (178)

with S,,,, defined as in eq. (107). The amplitudes involving

X-particles of J” = 2% involve a rank-two tensor, X (¥2)
The definition of this is given below:

Xt *t(f; #ufgfi)f(;;)’ (179)
X O = PR ORGSR 10 Sy (180)
X5 = P;E )a,a(K) |:t(K*5) ((fiﬂgf(m) f(23)
o T 15 1 (181)
285 =t m ags Ly Ty (182)
foéyf ):Pc(;;)'yéa’ﬁ’ 150 (K)t((?f}{ﬁ/)
A oy Fi Fa)s (183)
Ay _P;E,V)aa (K)e*" K, t((fi)yt((zl?z)a
e T (184)
B, _P;Eu)oca (K)e K t((zl() *K*)y

M) GO G 1
(t<14>6 (23) T 235t (1

) 1) (185)
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Fig. 1. Distortion on the Breit-Wigner amplitude squared by
the s-dependence numerators: with Q},., f B2(Qy~ ) (solid line),
with 30.3Q%,;B1(Qu~y) (dotted line), 20[Q2, ;B2(Qus) —
30.3Qy, f Ba(Qy~s)] (dashed line).

where A, corresponds to 271 — K*K* with L = 1 and
S =1, By, corresponds to 2°F — K*K* with L =1 and
S = 2. We ignore 2=+t — K*K* with L = 3 due to a
strong centrifugal barrier.

4 Discussion

Here we add some points of general technique in fitting the
data. The first concerns the fact that tensor amplitudes
are not always unique. As an example, in J/¢¥ — ~fa,
there are three independent helicity amplitudes. But the
general formalism allows one to write down five covari-
ant tensor amplitudes. Those five are independent in the
process J/¢ — wfs, but for the radiative decay, gauge
invariance makes two of them dependent on the other
three. Two further linear combinations differ from the first
three only by a different s-dependence arising from the
momentum dependence built into the tensor expressions.
Chung [11] recommends using all five combinations, so
as to retain the differences in the possible s-dependence.
However, this gives rise to a practical problem.

One is usually fitting resonances such as f> to the data.
If two of the amplitudes differ from the others only in the
s-dependence, this is equivalent to putting into the nu-
merator of an fo Breit-Wigner amplitude a linear combi-
nation of two s-dependent terms with two free param-
eters. This may lead to a zero amplitude at the reso-
nance mass and can give rise to a structure which may
lie 500 MeV or 1 GeV away from fo; it may be easily
confused with the effects of other resonances. This is il-
lustrated in fig. 1 for the amplitude squared |T'|?> tak-
ing as an example J/¢ — vf2(1700) — yKK. For the
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solid line, we use T' = Q?MfBQ(lef)/(M? —s—iMIYy)
with My = 1.7 GeV and Iy = 0.15 GeV; for the dot-
ted line which lies very close to the solid line, we use
T =303 - Qw,ny4(wayf)/(Mf — S5 — ’LMfFf) The two
different s-dependence numerators give a hardly visible
difference in the line-shape of f;. But if one allows two
s-dependent terms in the numerator with two free param-
eters, a ridiculous shape (dashed line) could happen for
a bingle resonance f2(1700) in this illustration we use

Ki/fBQ Qu~r) — 30. 3Qw¥B4 Quy~f)] in the numera-
tor though theoretically this possibility cannot be ex-
cluded, it is very odd and in practice one may end up fit-
ting other 271 components far away from the fy-resonance
mass with fa. One therefore should be very careful in
drawing conclusions from a fit using more than the mini-
mum number of amplitudes with different angular depen-
dence.

In J/4 radiative decays, the ¢ pair annihilates to glu-
ons. This requires a short-range interaction with a range
of order 1/m., where m, is the mass of the c-quark. There-
fore the centrifugal barrier for J/i¢ — ~vX is strong. Some
production with L = 1 is observed (at momentum transfer
<1 GeV/c), but we find little evidence for L > 1.
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