Covariant tensor formalism for partial-wave analyses of ψ decay to mesons

B.S. Zou ${ }^{1,2, a}$ and D.V. Bugg ${ }^{3}$
${ }^{1}$ CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, PRC
${ }^{2}$ Institute of High Energy Physics, CAS, P.O. Box 918(4), Beijing 100039, PRC
${ }^{3}$ Queen Mary College, London, UK

Received: 29 November 2002 / Revised version: 19 December 2002 /
Published online: 25 March 2003 - © Società Italiana di Fisica / Springer-Verlag 2003
Communicated by V.V. Anisovich

Abstract

J / \psi\) and ψ^{\prime} decays to mesons are a good place to look for glueballs, hybrids and for extracting strange and non-strange components in mesons. Abundant J / ψ and ψ^{\prime} events have been collected at the Beijing Electron Positron Collider (BEPC). More data will be collected at upgraded BEPC and CLEO-C. Here we provide explicit PWA formulae for many interesting channels in the covariant tensor formalism.

PACS. 13.20.Gd Leptonic, semileptonic, and radiative decays of mesons: Decays of $J / \psi, \Upsilon$, and other quarkonia - 13.25.Gv Hadronic decays of mesons: Decays of $J / \psi, \Upsilon$, and other quarkonia - 13.66.Bc Hadron production in $e^{-} e^{+}$interactions - 11.80.Et Partial-wave analysis

1 Introduction

High-statistics data have appeared from BES for J / ψ decays and will soon be available also for ψ^{\prime} decays. Further high-statistics data are expected from CLEO [1]. It is convenient to have a uniform approach to partial-wave analyses. Here we provide one such approach using the covariant tensor formalism. A similar approach has been used in analyzing other reactions [2-4]. We provide formulae documenting those which have been used for a number of channels already published by BES [5-9] and extend them to further channels being prepared for publication. This list of reactions is not exhaustive, but formulae are readily extended to other cases following the same methods.

Reactions fall into two categories: non-radiative decays, where final-state particles are pions or kaons; all polarization information is then available in the form of angular distributions. Reactions of this type are discussed in sect. 2. This formalism extends also to final states containing ω, where polarization information is measured fully by the decay $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$. The second class of reactions consists of radiative decays, e.g. $J / \psi \rightarrow \gamma \pi^{+} \pi^{-}$. For this class, differential cross-sections need to be summed over the unmeasured helicities of the photon, incorporating the knowledge that the photon is transverse. These reactions are considered in sect. 3 .

[^0]
2 Formalism for ψ non-radiative decay to mesons

The general form for the decay amplitude of a vector meson ψ with spin projection m is

$$
\begin{equation*}
A=\psi_{\mu}(m) A^{\mu}=\psi_{\mu}(m) \sum_{i} \Lambda_{i} U_{i}^{\mu} \tag{1}
\end{equation*}
$$

where $\psi_{\mu}(m)$ is the polarization vector of $\psi ; U_{i}^{\mu}$ is the i-th partial-wave amplitude with coupling strength determined by a complex parameter Λ_{i}. The polarization vector satisfies

$$
\begin{equation*}
\sum_{m=1}^{3} \psi^{\mu}(m) \psi^{* \nu}(m)=-g^{\mu \nu}+\frac{p_{\psi}^{\mu} p_{\psi}^{\nu}}{p_{\psi}^{2}} \equiv-\tilde{g}^{\mu \nu}\left(p_{\psi}\right) \tag{2}
\end{equation*}
$$

For ψ production from $e^{+} e^{-}$annihilation, the electrons are highly relativistic, with the result that $J_{z}= \pm 1$. If we take the beam direction to be the z-axis, this limits m to 1 and 2 , i.e. components along x and y. Then the differential cross-section for the decay to an n-body final state is

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{n}}=\frac{(2 \pi)^{4}}{2 M_{\psi}} \cdot \frac{1}{2} \sum_{m=1}^{2} \psi_{\mu}(m) A^{\mu} \psi_{\mu^{\prime}}^{*}(m) A^{* \mu^{\prime}} \tag{3}
\end{equation*}
$$

where M_{ψ} is the mass of ψ and $\mathrm{d} \Phi_{n}$ is the standard element of the n-body phase space given by

$$
\begin{equation*}
\mathrm{d} \Phi_{n}\left(p_{\psi} ; p_{1}, \cdots p_{n}\right)=\delta^{4}\left(p_{\psi}-\sum_{i=1}^{n} p_{i}\right) \prod_{i=1}^{n} \frac{\mathrm{~d}^{3} \mathbf{p}_{i}}{(2 \pi)^{3} 2 E_{i}} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& B_{1}\left(Q_{a b c}\right)=\sqrt{\frac{2}{Q_{a b c}^{2}+Q_{0}^{2}},} \tag{14}\\
& B_{2}\left(Q_{a b c}\right)=\sqrt{\frac{13}{Q_{a b c}^{4}+3 Q_{a b c}^{2} Q_{0}^{2}+9 Q_{0}^{4}},} \tag{15}\\
& B_{3}\left(Q_{a b c}\right)=\sqrt{\frac{277}{Q_{a b c}^{6}+6 Q_{a b c}^{4} Q_{0}^{2}+45 Q_{a b c}^{2} Q_{0}^{4}+225 Q_{0}^{6}},} \tag{16}\\
& B_{4}\left(Q_{a b c}\right)=\sqrt{\frac{12746}{Q_{a b c}^{8}+10 Q_{a b c}^{6} Q_{0}^{2}+135 Q_{a b c}^{4} Q_{0}^{4}+1575 Q_{a b c}^{2} Q_{0}^{6}+11025 Q_{0}^{8}} .} \tag{17}
\end{align*}
$$

Note that

$$
\begin{equation*}
\sum_{m=1}^{2} \psi_{\mu}(m) \psi_{\mu^{\prime}}^{*}(m)=\delta_{\mu \mu^{\prime}}\left(\delta_{\mu 1}+\delta_{\mu 2}\right) \tag{5}
\end{equation*}
$$

so we have

$$
\begin{align*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{n}}= & \frac{1}{2} \sum_{\mu=1}^{2} A^{\mu} A^{* \mu}= \\
& \frac{1}{2} \sum_{i, j} \Lambda_{i} \Lambda_{j}^{*} \sum_{\mu=1}^{2} U_{i}^{\mu} U_{j}^{* \mu} \equiv \sum_{i, j} P_{i j} \cdot F_{i j} \tag{6}
\end{align*}
$$

where

$$
\begin{align*}
& P_{i j}=P_{j i}^{*} \tag{7}\\
&=\Lambda_{i} \Lambda_{j}^{*} \tag{8}\\
& F_{i j}=F_{j i}^{*}=\frac{1}{2} \sum_{\mu=1}^{2} U_{i}^{\mu} U_{j}^{* \mu}
\end{align*}
$$

We construct the partial-wave amplitudes U_{i}^{μ} in the covariant Rarita-Schwinger tensor formalism [10]. As in ref. [11], we use the pure-orbital-angular-momentum covariant tensors $\tilde{t}_{\mu_{1} \cdots \mu_{l}}^{(l)}$ and the covariant spin wave functions $\phi_{\mu_{1} \cdots \mu_{S}}$ together with the operators $g_{\mu \nu}, \epsilon_{\mu \nu \lambda \sigma}$ and the momenta of parent particles. For a process $a \rightarrow b c$, the covariant tensors $\tilde{t}_{\mu_{1} \cdots \mu_{l}}^{(l)}$ for final states of pure orbital angular momentum l are constructed from the relevant momenta p_{a}, p_{b} and $p_{c}[11]:$

$$
\begin{align*}
& \tilde{t}^{(0)}=1 \tag{9}\\
& \tilde{t}_{\mu}^{(1)}= \tilde{g}_{\mu \nu}\left(p_{a}\right) r^{\nu} B_{1}\left(Q_{a b c}\right) \equiv \tilde{r}_{\mu} B_{1}\left(Q_{a b c}\right), \tag{10}\\
& \tilde{t}_{\mu \nu}^{(2)}= {\left[\tilde{r}_{\mu} \tilde{r}_{\nu}-\frac{1}{3}(\tilde{r} \cdot \tilde{r}) \tilde{g}_{\mu \nu}\left(p_{a}\right)\right] B_{2}\left(Q_{a b c}\right), } \tag{11}\\
& \tilde{t}_{\mu \nu \lambda}^{(3)}= {\left[\tilde{r}_{\mu} \tilde{r}_{\nu} \tilde{r}_{\lambda}-\frac{1}{5}(\tilde{r} \cdot \tilde{r})\left(\tilde{g}_{\mu \nu}\left(p_{a}\right) \tilde{r}_{\lambda}\right.\right.} \\
&\left.\left.+\tilde{g}_{\nu \lambda}\left(p_{a}\right) \tilde{r}_{\mu}+\tilde{g}_{\lambda \mu}\left(p_{a}\right) \tilde{r}_{\nu}\right)\right] B_{3}\left(Q_{a b c}\right), \tag{12}
\end{align*}
$$

with $r=p_{b}-p_{c}$. The term $(\tilde{r} \cdot \tilde{r})$ is the dot-product of 4vectors: $\tilde{r}_{0} \tilde{r}_{0}-\tilde{r}_{1} \tilde{r}_{1}-\tilde{r}_{2} \tilde{r}_{2}-\tilde{r}_{3} \tilde{r}_{3}$, and makes $\tilde{t}_{\mu \nu}^{(2)}$ traceless.

Likewise $\tilde{t}^{(3)}$ is constructed to be traceless. $Q_{a b c}$ is the magnitude of \mathbf{p}_{b} or \mathbf{p}_{c} in the rest system of a, where

$$
\begin{equation*}
Q_{a b c}^{2}=\frac{\left(s_{a}+s_{b}-s_{c}\right)^{2}}{4 s_{a}}-s_{b} \tag{13}
\end{equation*}
$$

with $s_{a}=E_{a}^{2}-\mathbf{p}_{a}^{2}$. Then $\tilde{t}_{\mu_{1} \cdots \mu_{l}}^{(l)}$ contains the angular distribution function multiplied by a Blatt-Weisskopf barrier factor $[11,12] Q_{a b c}^{l} B_{l}\left(Q_{a b c}\right)$. Explicitly

see equations (14)-(17) above

Here Q_{0} is a hadron "scale" parameter $Q_{0}=$ $0.197321 / R \mathrm{GeV} / c$, where R is the radius of the centrifugal barrier in fm. We remark that in these Blatt-Weisskopf factors, the approximation is made that the centrifugal barrier may be replaced by a square well of radius R.

If a is an intermediate resonance decaying into $b c$, one needs to introduce into the amplitude a Breit-Wigner propagator denoted by $f_{(b c)}^{(a)}$:

$$
\begin{equation*}
f_{(b c)}^{(a)}=\frac{1}{m_{a}^{2}-s_{b c}-i m_{a} \Gamma_{a}} \tag{18}
\end{equation*}
$$

here $s_{b c}=\left(p_{b}+p_{c}\right)^{2}$ is the invariant mass-squared of b and $c ; m_{a}, \Gamma_{a}$ are the resonance mass and width.

We outline now some further general features of notation, taking as an example the two-step process $J / \psi \rightarrow$ $\rho_{12} \pi_{3}, \rho_{12} \rightarrow \pi_{1} \pi_{2}$. In the first step we denote the orbital angular momentum by L; in this example $L=1$. In the second step, we denote the orbital angular momentum by ℓ, which is again 1 in this case. The tensor describing the first step will be denoted by $\tilde{T}_{\mu_{1} \cdots \mu_{L}}^{(L)}$. The tensor describing the second step will be denoted by $\tilde{t}_{\mu_{1} \cdots \mu_{l}}^{(l)}$. The orbital angular momentum is constructed in terms of relative momenta, so it is convenient to define $q_{(i j)}=p_{i}-p_{j}$.

Some expressions depend also on the total momentum of the $i j$ pair: $p_{(i j)}=p_{i}+p_{j}$. When one wants to combine two angular momenta (\mathbf{j}_{b} and \mathbf{j}_{c}) into a total angular momentum \mathbf{j}_{a}, if $j_{a}+j_{b}+j_{c}$ is an odd number, then a combination $\epsilon_{\mu \nu \lambda \sigma} p_{a}^{\mu}$, with p_{a} the momentum of the parent particle, is needed; otherwise it is not needed.

Projection operators will be a useful general tool in constructing expressions. For a meson a with spin S and corresponding spin wave function $\phi_{\mu_{1} \cdots \mu_{S}}\left(p_{a}, m\right)$, what we
usually need to use in constructing amplitudes is its spin projection operator $P_{\mu_{1} \cdots \mu_{S} \mu_{1}^{\prime} \cdots \mu_{S}^{\prime}}^{(S)}\left(p_{a}\right)$:

$$
\begin{align*}
& P_{\mu \mu^{\prime}}^{(1)}\left(p_{a}\right)=\sum_{m} \phi_{\mu}\left(p_{a}, m\right) \phi_{\mu^{\prime}}^{*}\left(p_{a}, m\right)= \\
& \quad-g_{\mu \mu^{\prime}}+\frac{p_{a \mu} p_{a \mu^{\prime}}}{p_{a}^{2}} \equiv-\tilde{g}_{\mu \mu^{\prime}}\left(p_{a}\right), \tag{19}\\
& P_{\mu \nu \mu^{\prime} \nu^{\prime}}^{(2)}\left(p_{a}\right)=\sum_{m} \phi_{\mu \nu}\left(p_{a}, m\right) \phi_{\mu^{\prime} \nu^{\prime}}^{*}\left(p_{a}, m\right)= \\
& \quad \frac{1}{2}\left(\tilde{g}_{\mu \mu^{\prime}} \tilde{g}_{\nu \nu^{\prime}}+\tilde{g}_{\mu \nu^{\prime}} \tilde{g}_{\nu \mu^{\prime}}\right)-\frac{1}{3} \tilde{g}_{\mu \nu} \tilde{g}_{\mu^{\prime} \nu^{\prime}}, \tag{20}\\
& P_{\mu \nu \lambda \mu^{\prime} \nu^{\prime} \lambda^{\prime}}^{(3)}\left(p_{a}\right)=\sum_{m} \phi_{\mu \nu \lambda}\left(p_{a}, m\right) \phi_{\mu^{\prime} \nu^{\prime} \lambda^{\prime}}^{*}\left(p_{a}, m\right)= \\
& \quad-\frac{1}{6}\left(\tilde{g}_{\mu \mu^{\prime}} \tilde{g}_{\nu \nu^{\prime}} \tilde{g}_{\lambda \lambda^{\prime}}+\tilde{g}_{\mu \mu^{\prime}} \tilde{g}_{\nu \lambda^{\prime}} \tilde{g}_{\lambda \nu^{\prime}}+\tilde{g}_{\mu \nu^{\prime}} \tilde{g}_{\nu \mu^{\prime}} \tilde{g}_{\lambda \lambda^{\prime}}\right. \\
& \left.\quad+\tilde{g}_{\mu \nu^{\prime}} \tilde{g}_{\nu \lambda^{\prime}} \tilde{g}_{\lambda \mu^{\prime}}+\tilde{g}_{\mu \lambda^{\prime}} \tilde{g}_{\nu \nu^{\prime}} \tilde{g}_{\lambda \mu^{\prime}}+\tilde{g}_{\mu \lambda^{\prime}} \tilde{g}_{\nu \mu^{\prime}} \tilde{g}_{\lambda \nu^{\prime}}\right) \\
& \quad+\frac{1}{15}\left(\tilde{g}_{\mu \nu} \tilde{g}_{\mu^{\prime} \nu^{\prime}} \tilde{g}_{\lambda \lambda^{\prime}}+\tilde{g}_{\mu \nu} \tilde{g}_{\nu^{\prime} \lambda^{\prime}} \tilde{g}_{\lambda \mu^{\prime}}+\tilde{g}_{\mu \nu} \tilde{g}_{\mu^{\prime} \lambda^{\prime}} \tilde{g}_{\lambda \nu^{\prime}}\right. \\
& \quad+\tilde{g}_{\mu \lambda} \tilde{g}_{\mu^{\prime} \lambda^{\prime}} \tilde{g}_{\nu \nu^{\prime}}+\tilde{g}_{\mu \lambda} \tilde{g}_{\mu^{\prime} \nu^{\prime}} \tilde{g}_{\nu \lambda^{\prime}}+\tilde{g}_{\mu \lambda} \tilde{g}_{\nu^{\prime} \lambda^{\prime}} \tilde{g}_{\nu \mu^{\prime}} \\
& \left.\quad+\tilde{g}_{\nu \lambda} \tilde{g}_{\nu^{\prime} \lambda^{\prime}} \tilde{g}_{\mu \mu^{\prime}}+\tilde{g}_{\nu \lambda} \tilde{g}_{\mu^{\prime} \nu^{\prime}} \tilde{g}_{\mu \lambda^{\prime}}+\tilde{g}_{\nu \lambda} \tilde{g}_{\mu^{\prime} \lambda^{\prime}} \tilde{g}_{\mu \nu^{\prime}}\right), \tag{21}\\
& P_{\mu \nu \lambda \sigma \mu^{\prime} \nu^{\prime} \lambda^{\prime} \sigma^{\prime}}^{(4)}\left(p_{a}\right)=\sum_{m} \phi_{\mu \nu \lambda \sigma}\left(p_{a}, m\right) \phi_{\mu^{\prime} \nu^{\prime} \lambda^{\prime} \sigma^{\prime}}\left(p_{a}, m\right)= \\
& \frac{1}{24}\left[\tilde{g}_{\mu \mu^{\prime}} \tilde{g}_{\nu \nu^{\prime}} \tilde{g}_{\lambda \lambda^{\prime}} \tilde{g}_{\sigma \sigma^{\prime}}+\cdots\right. \\
& \left.\quad\left(\mu^{\prime}, \nu^{\prime}, \lambda^{\prime}, \sigma^{\prime} \text { permutation, } 24 \text { terms }\right)\right] \\
& \quad-\frac{1}{84}\left[\tilde{g}_{\mu \nu} \tilde{g}_{\mu^{\prime} \nu^{\prime}} \tilde{g}_{\lambda \lambda^{\prime}} \tilde{g}_{\sigma \sigma^{\prime}}+\cdots\right. \\
& \quad(\mu, \nu, \lambda, \sigma \text { permutation, } \\
& \quad+\frac{1}{105}\left(\tilde{g}_{\mu \nu} \tilde{g}_{\lambda \sigma}+\tilde{g}_{\mu \lambda} \tilde{g}_{\nu \sigma}+\tilde{g}_{\mu \sigma} \tilde{g}_{\nu \lambda}\right) \\
& \quad\left(\tilde{g}_{\mu^{\prime} \nu^{\prime}} \tilde{g}_{\lambda^{\prime} \sigma^{\prime}}+\tilde{g}_{\mu^{\prime} \lambda^{\prime}} \tilde{g}_{\nu^{\prime} \sigma^{\prime}}+\tilde{g}_{\mu^{\prime} \sigma^{\prime}} \tilde{g}_{\nu^{\prime} \lambda^{\prime}}\right) .
\end{align*}
$$

Note that

$$
\begin{equation*}
\tilde{t}_{\mu_{1} \cdots \mu_{L}}^{(L)}=(-1)^{L} P_{\mu_{1} \cdots \mu_{L} \mu_{1}^{\prime} \cdots \mu_{L}^{\prime}}^{(L)} r^{\mu_{1}^{\prime}} \cdots r^{\mu_{L}^{\prime}} B_{L}\left(Q_{a b c}\right) \tag{23}
\end{equation*}
$$

We come now to specific examples of reactions.

$2.1 \psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$

For three isospin-1 particles coupling to an isospin-zero particle, the only possible coupling for isospin conservation is $\left(\mathbf{I}_{1} \times \mathbf{I}_{2}\right) \cdot \mathbf{I}_{3}$, which is fully anti-symmetric in particles $1,2,3$. This demands that the angular dependent part should also be fully anti-symmetric for particles 1 , 2,3 , in order to make the overall amplitude symmetric. For $\psi \rightarrow \pi^{+} \pi^{-} \pi^{0}$, any two pions are limited to an overall isospin 1 and hence can only be negative-parity states with J odd, i.e., $J^{P}=1^{-}, 3^{-}, 5^{-}$etc.

For $\psi \rightarrow \rho\left(1^{-}\right) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}, \psi$ decays to $\rho \pi$ in a P_{-} wave; then ρ decays to $\pi \pi$ also in a P-wave, hence the
amplitude for the two-step process is

$$
\begin{align*}
U_{\rho}^{\mu}= & \left(\mathbf{I}_{1} \times \mathbf{I}_{2}\right) \cdot \mathbf{I}_{3} \epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma} \tilde{T}_{(\rho 3)}^{(1) \nu} \tilde{t}_{(12)}^{(1) \lambda} f_{(12)}^{(\rho)} \\
& +(1 \leftrightarrow 3)+(2 \leftrightarrow 3) \\
= & 4 i \epsilon_{\mu \nu \lambda \sigma} p_{1}^{\nu} p_{2}^{\lambda} p_{3}^{\sigma}\left[B_{1}\left(Q_{\psi \rho 3}\right) f_{(12)}^{(\rho)} B_{1}\left(Q_{\rho 12}\right)\right. \\
& +B_{1}\left(Q_{\psi \rho 2}\right) f_{(13)}^{(\rho)} B_{1}\left(Q_{\rho 13}\right) \\
& \left.+B_{1}\left(Q_{\psi \rho 1}\right) f_{(23)}^{(\rho)} B_{1}\left(Q_{\rho 23}\right)\right] . \tag{24}
\end{align*}
$$

Here we use the convention $\mathbf{I}_{1}=\left(\frac{-1}{\sqrt{2}}, \frac{-i}{\sqrt{2}}, 0\right)$ for $\pi^{+}, \mathbf{I}_{2}=$ $\left(\frac{1}{\sqrt{2}}, \frac{-i}{\sqrt{2}}, 0\right)$ for π^{-}and $\mathbf{I}_{3}=(0,0,1)$ for π^{0}. This gives $\left(\mathbf{I}_{1} \times \mathbf{I}_{2}\right) \cdot \mathbf{I}_{3}=-i$.

The amplitude can be further simplified in the ψ rest system as

$$
\begin{align*}
& U_{\rho}^{\mu}=4 i M_{\psi} \epsilon_{\mu \nu \lambda 0} p_{1}^{\nu} p_{2}^{\lambda}\left[B_{1}\left(Q_{\psi \rho 3}\right) f_{(12)}^{(\rho)} B_{1}\left(Q_{\rho 12}\right)\right. \\
&+B_{1}\left(Q_{\psi \rho 2}\right) f_{(13)}^{(\rho)} B_{1}\left(Q_{\rho 13}\right) \\
&\left.+B_{1}\left(Q_{\psi \rho 1}\right) f_{(23)}^{(\rho)} B_{1}\left(Q_{\rho 23}\right)\right] . \tag{25}
\end{align*}
$$

For any other 1^{-}intermediate state ρ^{\prime}, one can get the corresponding amplitude by simply replacing the BreitWigner component $f^{(\rho)}$ by $f^{\left(\rho^{\prime}\right)}$.

For $\psi \rightarrow \rho_{3}\left(3^{-}\right) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}, \psi$ decays to $\rho_{3} \pi$ in an F-wave; then ρ_{3} decays to $\pi \pi$ also in an F-wave; the amplitude is

$$
\begin{align*}
U_{\rho_{3}}^{\mu}= & \left(\mathbf{I}_{1} \times \mathbf{I}_{2}\right) \cdot \mathbf{I}_{3} \epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma} \tilde{T}_{\left(\rho_{3} 3\right)}^{(3) \nu \alpha \beta} \tilde{t}_{(12) \alpha \beta}^{(3) \lambda} \cdot f_{(12)}^{\left(\rho_{3}\right)} \\
& +(1 \leftrightarrow 3)+(2 \leftrightarrow 3) \\
= & -i \epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma}\left[\tilde{T}_{\left(\rho_{3} 3\right)}^{(3) \nu \alpha \beta} \tilde{t}_{(12) \alpha \beta}^{(3) \lambda} \cdot f_{(12)}^{\left(\rho_{3}\right)}\right. \\
& -(1 \leftrightarrow 3)-(2 \leftrightarrow 3)] . \tag{26}
\end{align*}
$$

Similarly, for $\psi \rightarrow \rho_{5}\left(5^{-}\right) \pi \rightarrow \pi^{+} \pi^{-} \pi^{0}$, the amplitude should be

$$
\begin{align*}
U_{\rho_{5}}^{\mu}= & \left(\mathbf{I}_{1} \times \mathbf{I}_{2}\right) \cdot \mathbf{I}_{3} \epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma} \tilde{T}_{\left(\rho_{5} 3\right)}^{(5) \nu \alpha \beta \gamma \delta} \tilde{t}_{(12) \alpha \beta \gamma \delta}^{(5) \lambda} f_{(12)}^{\left(\rho_{5}\right)} \\
& +(1 \leftrightarrow 3)+(2 \leftrightarrow 3) \\
= & -i \epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma}\left[\tilde{T}_{\left(\rho_{5} 3\right)}^{(5) \alpha \beta \gamma \delta} \tilde{t}_{(12) \alpha \beta \gamma \delta}^{(5) \lambda} f_{(12)}^{\left(\rho_{5}\right)}\right. \\
& -(1 \leftrightarrow 3)-(2 \leftrightarrow 3)] . \tag{27}
\end{align*}
$$

If one considers a small isospin symmetry-breaking effect, a free parameter can be multiplied by the term corresponding to the ρ^{0} intermediate state.

$2.2 \psi \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-} \pi^{0}$

This channel is similar to $\pi^{+} \pi^{-} \pi^{0}$. However, we now need to consider resonances for both $K \pi$ and $K^{+} K^{-}$
subsystems. Numbering K^{+}, K^{-}, π^{0} as particle 1, 2, 3, the possible partial-wave amplitudes are the following:

$$
\begin{align*}
& U_{\rho^{\prime}}^{\mu}=\epsilon_{\mu \nu \lambda \sigma} p_{1}^{\nu} p_{2}^{\lambda} p_{3}^{\sigma} B_{1}\left(Q_{\psi \rho^{\prime} 3}\right) f_{(12)}^{\left(\rho^{\prime}\right)} B_{1}\left(Q_{\rho^{\prime} 12}\right), \tag{28}\\
& U_{\rho_{3}}^{\mu}=\epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma} \tilde{T}_{\left(\rho_{3} 3\right)}^{(3) \nu \alpha \beta} \tilde{t}_{(12) \alpha \beta}^{(3) \lambda} \cdot f_{(12)}^{\left(\rho_{3}\right)}, \tag{29}\\
& U_{\rho_{5}}^{\mu}=\epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma} \tilde{T}_{\left(\rho_{5} 3\right)}^{(5) \nu \alpha \gamma \delta} \tilde{t}_{(12) \alpha \beta \gamma \delta}^{(5) \lambda} f_{(12)}^{\left(\rho_{5}\right)}, \tag{30}\\
& U_{K^{*}}^{\mu}=\epsilon_{\mu \nu \lambda \sigma} p_{1}^{\nu} p_{2}^{\lambda} p_{3}^{\sigma}\left[B_{1}\left(Q_{\psi K^{*} 2}\right) f_{(13)}^{\left(K^{*}\right)} B_{1}\left(Q_{K^{*} 13}\right)\right. \\
& \left.+B_{1}\left(Q_{\psi K^{*} 1}\right) f_{(23)}^{\left(K^{*}\right)} B_{1}\left(Q_{K^{*} 23}\right)\right], \tag{31}\\
& U_{K_{3}^{*}}^{\mu}=\epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma}\left[\tilde{T}_{\left(K_{3}^{*} 2\right)}^{(3) \nu \alpha \beta} \tilde{t}_{(13) \alpha \beta}^{(3) \lambda} \cdot f_{(13)}^{\left(K_{3}^{*}\right)}-(1 \leftrightarrow 2)\right], \tag{32}\\
& U_{K_{5}^{*}}^{\mu}=\epsilon_{\mu \nu \lambda \sigma} p_{\psi}^{\sigma}\left[\tilde{T}_{\left(K_{5}^{*} 2\right)}^{(5) \nu \beta \gamma \delta} \tilde{t}_{(13) \alpha \beta \gamma \delta}^{(5) \lambda} f_{(13)}^{\left(K_{5}^{*}\right)}-(1 \leftrightarrow 2)\right] . \tag{33}
\end{align*}
$$

$2.3 \psi \rightarrow \phi \pi^{+} \boldsymbol{\pi}^{-} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

For this channel, ϕ is reconstructed from two kaons; most possible intermediate states are ϕ plus an isospin-zero resonance, f_{0} or f_{2}, which decays into two pions. The f_{4} is unlikely to be produced, because the ψ mass is not far from the ϕf_{4} threshold and the decay requires $L=2$ between ϕ and f_{4}, hence a strong centrifugal barrier. For $\psi \rightarrow \phi f_{J}$ in an orbital-angular-momentum L state, the conservation of the total angular momentum requires

$$
\begin{equation*}
\mathbf{S}_{\psi}=\mathbf{S}+\mathbf{L} \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{S}=\mathbf{S}_{\phi}+\mathbf{J} \tag{35}
\end{equation*}
$$

In the following, we use the notation $\left\langle\phi f_{J} \mid L S\right\rangle$ to denote the corresponding partial-wave amplitude U_{i}^{μ}. We number the $K^{+}, K^{-}, \pi^{+}, \pi^{-}$as particle $1,2,3,4$, respectively. Then we have two independent partial-wave amplitudes for each f_{0} production. In the general formalism, they may be written

$$
\begin{align*}
\left\langle\phi f_{0} \mid 01\right\rangle & =\tilde{t}_{(12)}^{(1) \mu} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{0}\right)} \tag{36}\\
\left\langle\phi f_{0} \mid 21\right\rangle & =\tilde{T}_{\left(\phi f_{0}\right)}^{(2) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{0}\right)} \tag{37}
\end{align*}
$$

For the very narrow ϕ resonance, the $\ell=1$ centrifugal barrier factor for the ϕ decay has a negligible effect on the ϕ line-shape and can be dropped. The expression for $t_{(12)}^{(1) \mu}$ simplifies to

$$
t_{(12)}^{(1) \mu}=\tilde{r}^{\mu}=q_{(12)}^{\mu} .
$$

In the last step, we use the fact that K^{+}and K^{-}have equal masses. Then eqs. (36) and (37) become

$$
\begin{align*}
\left\langle\phi f_{0} \mid 01\right\rangle & =q_{(12)}^{\mu} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{0}\right)}, \tag{38}\\
\left\langle\phi f_{0} \mid 21\right\rangle & =\tau^{\mu \nu} q_{(12) \nu} B_{2}\left(Q_{\psi \phi f_{0}}\right) f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{0}\right)}, \tag{39}
\end{align*}
$$

where $\tau^{\mu \nu}$ is the $L=2$ operator,

$$
\begin{equation*}
\tau^{\mu \nu}=q_{(12)}^{\mu} q_{(12)}^{\nu}-\frac{1}{3}\left(q_{(12)} \cdot q_{(12)}\right) g^{\mu \nu} \tag{40}
\end{equation*}
$$

For each f_{2} production, there are five independent partial waves, which we retain in their general form:

$$
\begin{align*}
\left\langle\phi f_{2} \mid 01\right\rangle= & \tilde{t}_{(34)}^{(2) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{2}\right)}, \tag{41}\\
\left\langle\phi f_{2} \mid 21\right\rangle= & \tilde{T}_{\left(\phi f_{2}\right)}^{(2) \mu \tilde{t}_{(34) \alpha \nu}^{(2)} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{2}\right)},} \tag{42}\\
\left\langle\phi f_{2} \mid 22\right\rangle= & \epsilon^{\mu \alpha \beta \gamma} p_{\psi \alpha} \tilde{T}_{\left(\phi f_{2}\right) \beta}^{(2) \delta}\left[\epsilon_{\gamma \lambda \nu} \tilde{t}_{(34) \delta}^{(2) \lambda}\right. \\
& \left.+\epsilon_{\delta \lambda \sigma \nu} \tilde{t}_{(34) \gamma}^{(2) \lambda}\right] p_{\psi}^{\sigma} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{2}\right)}, \tag{43}\\
\left\langle\phi f_{2} \mid 23\right\rangle= & P^{(3) \mu \alpha \beta \gamma \delta \nu}\left(p_{\psi}\right) \tilde{T}_{\left(\phi f_{2}\right) \alpha \beta}^{(2)} \tilde{t}_{(34) \gamma \delta}^{(2)} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{2}\right)}, \tag{44}
\end{align*}
$$

$\left\langle\phi f_{2} \mid 43\right\rangle=\tilde{T}_{\left(\phi f_{2}\right)}^{(4) \mu \nu \lambda \sigma} \tilde{t}_{(12) \nu}^{(1)} \tilde{t}_{(34) \lambda \sigma}^{(2)} f_{(12)}^{(\phi)} f_{(34)}^{\left(f_{2}\right)}$.
There is no established resonance decaying into $\phi \pi$. However, there are speculations about ($s \bar{s} q \bar{q}$) four-quark states which could decay to $\phi \pi$. So, here we also give some partial-wave amplitudes for $\psi \rightarrow X \pi$ with the intermediate resonance X further decaying to $\phi \pi$. For X being a $\rho^{\prime}\left(1^{--}\right)$state, there is only one independent amplitude since both $\psi \rightarrow \rho^{\prime} \pi$ and $\rho^{\prime} \rightarrow \phi \pi$ are limited to a P-wave:

$$
\begin{align*}
U_{\rho^{\prime}}^{\mu}= & \epsilon_{\alpha \beta \gamma}^{\mu} p_{\psi}^{\alpha}\left[\tilde{T}_{\left(\rho^{\prime} 3\right)}^{(1) \beta} \epsilon^{\gamma \delta \sigma \lambda} p_{\psi \delta} \tilde{t}_{(\phi 4) \sigma}^{(1)} \tilde{t}_{(12) \lambda}^{(1)} f_{(12)}^{(\phi)} f_{(\phi 4)}^{\left(\rho^{\prime}\right)}\right. \\
& \left.+\tilde{T}_{\left(\rho^{\prime} 4\right)}^{(1) \beta} \epsilon^{\gamma \delta \sigma \lambda} p_{\psi \delta} \tilde{t}_{(\phi 3) \sigma}^{(1)} \tilde{t}_{(12) \lambda}^{(1)} f_{(12)}^{(\phi)} f_{(\phi 3)}^{\left(\rho^{\prime}\right)}\right] . \tag{46}
\end{align*}
$$

For X being a $b_{1}\left(1^{+-}\right)$state, there are four independent amplitudes since both $\psi \rightarrow b_{1} \pi$ and $b_{1} \rightarrow \phi \pi$ can have both S and D waves:

$$
\begin{align*}
U_{b_{1} S S}^{\mu}= & \tilde{g}_{(123)}^{\mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(123)}^{\left(b_{1}\right)} \\
& +\tilde{g}_{(124)}^{\mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(124)}^{\left(b_{1}\right)}, \tag{47}\\
U_{b_{1} S D}^{\mu}= & \tilde{t}_{(\phi 3)}^{(2) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(123)}^{\left(b_{1}\right)} \\
& +\tilde{t}_{(\phi 4)}^{(2) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(124)}^{\left(b_{1}\right)}, \tag{48}\\
U_{b_{1} D S}^{\mu}= & \tilde{T}_{\left(b_{1} 4\right)}^{(2) \mu \lambda} \tilde{g}_{(123) \lambda \nu} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(123)}^{\left(b_{1}\right)} \\
& +\tilde{T}_{\left(b_{1} 3\right) \mu \lambda}^{(2) \mu \lambda} \tilde{g}_{(124) \lambda \nu} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(124)}^{\left(b_{1}\right)}, \tag{49}\\
U_{b_{1} D D}^{\mu}= & \tilde{T}_{\left(b_{1} 4\right)}^{(2) \mu \lambda} \tilde{t}_{(\phi 3) \lambda \nu}^{(2)} \tilde{t}_{(12) \nu}^{(1) \nu} f_{(12)}^{(\phi)} f_{(123)}^{\left(b_{1}\right)} \\
& +\tilde{T}_{\left(b_{1} 3\right)}^{(2) \mu \lambda} \tilde{t}_{(\phi 4) \lambda \nu}^{(2)} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(124)}^{\left(b_{1}\right)} . \tag{50}
\end{align*}
$$

$2.4 \psi \rightarrow \omega \mathrm{~K}^{+} \mathrm{K}^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \mathrm{~K}^{+} \mathrm{K}^{-}$

The formulae for this channel are quite similar to those in the previous subsection for $\psi \rightarrow \phi \pi^{+} \pi^{-}$. If we number $\pi^{0}, \pi^{+}, \pi^{-}, K^{+}, K^{-}$as $0,1,2,3,4$, then we can get corresponding partial-wave amplitudes by simply replacing $\tilde{t}_{(12)}^{(1) \mu}$ in equations of the previous subsection by ω^{μ} defined as

$$
\begin{align*}
\omega^{\mu}= & \epsilon_{\nu \lambda \sigma}^{\mu} p_{1}^{\nu} p_{2}^{\lambda} p_{0}^{\sigma}\left[B_{1}\left(Q_{\omega \rho 0}\right) f_{(12)}^{(\rho)} B_{1}\left(Q_{\rho 12}\right)\right. \\
& +B_{1}\left(Q_{\omega \rho 2}\right) f_{(10)}^{(\rho)} B_{1}\left(Q_{\rho 10}\right) \\
& \left.+B_{1}\left(Q_{\omega \rho 1}\right) f_{(20)}^{(\rho)} B_{1}\left(Q_{\rho 20}\right)\right] \tag{51}
\end{align*}
$$

and replacing $f_{(12)}^{(\phi)}$ by $f_{(012)}^{(\omega)}$.
$2.5 \psi \rightarrow \mathbf{K}^{+} \boldsymbol{\pi}^{-} \mathbf{K}^{-} \boldsymbol{\pi}^{+}$

We label $K^{+}, \pi^{-}, K^{-}, \pi^{+}$as $1,2,3,4$. For ρa_{0} and ρa_{2} intermediate states, the formulae are the same as for ϕf_{0} and ϕf_{2} intermediate states with a trivial exchange between pions and kaons. For $K K^{*^{\prime}} \rightarrow\left(K K^{*} \pi\right.$ or $\left.K \rho K\right)$, or $\pi \rho^{\prime} \rightarrow$ $K^{*} K$ intermediate states, the formulae are the same as for the $\pi \rho^{\prime} \rightarrow \pi \phi \pi$ intermediate state with proper recombination of particles. For $K K_{1}^{*} \rightarrow\left(K K^{*} \pi\right.$ or $\left.K \rho K\right)$ intermediate states, the formulae are the same as for the $\pi b_{1} \rightarrow \pi \phi \pi$ intermediate state with proper recombination of particles. So all the formulae given in the subsection on $\phi \pi^{+} \pi^{-}$may be applied here. In addition, there are many more possible intermediate states. We list additional formulae for some obvious large intermediate states. Note that a resonance with negative C-parity decays to $K_{j_{1}}^{*} \bar{K}_{j_{2}}^{*}$ with a relative minus sign to its charge conjugate state $\bar{K}_{j_{1}}^{*} K_{j_{2}}^{*}$:

$$
\begin{align*}
& \left\langle K^{*} K_{0}^{*} \mid 01\right\rangle=\tilde{t}_{(12)}^{(1) \mu} f_{(12)}^{\left(K^{*}\right)} f_{(34)}^{\left(\bar{K}_{0}^{*}\right)}-\tilde{t}_{(34)}^{(1) \mu} f_{(34)}^{\left(\bar{K}^{*}\right)} f_{(12)}^{\left(K_{0}^{*}\right)}, \\
& \left\langle K^{*} K_{0}^{*} \mid 21\right\rangle=\tilde{T}_{((12)(34))}^{(2) \mu \nu}\left[\tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{\left(K^{*}\right)} f_{(34)}^{\left(K_{0}^{*}\right)}\right. \\
& \left.-\tilde{t}_{(34) \nu}^{(1)} f_{(34)}^{\left(K^{*}\right)} f_{(12)}^{\left(K_{0}^{*}\right)}\right], \\
& \left\langle K^{*} K_{2}^{*} \mid 01\right\rangle=\tilde{t}_{(34)}^{(2) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{\left(K^{*}\right)} f_{(34)}^{\left(K_{2}^{*}\right)} \\
& -\tilde{t}_{(12)}^{(2) \mu \nu} \tilde{t}_{(34) \nu}^{(1)} f_{(34)}^{\left(K^{*}\right)} f_{(12)}^{\left(K_{2}^{*}\right)}, \\
& \left\langle K^{*} K_{2}^{*} \mid 21\right\rangle=\tilde{T}_{((12)(34))}^{(2) \mu \alpha}\left[\tilde{t}_{(34) \alpha \nu}^{(2)} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{\left(K^{*}\right)} f_{(34)}^{\left(K_{2}^{*}\right)}\right. \\
& \left.-\tilde{t}_{(12) \alpha \nu}^{(2)} \tilde{t}_{(34)}^{(1) \nu} f_{(34)}^{\left(K^{*}\right)} f_{(12)}^{\left(K_{2}^{*}\right)}\right], \\
& \left\langle K^{*} K_{2}^{*} \mid 22\right\rangle=\epsilon^{\mu \alpha \beta \gamma} p_{\psi \alpha} \tilde{T}_{((12)(34)) \beta}^{(2) \delta} \\
& \cdot\left\{\left[\epsilon_{\gamma \lambda \sigma \nu} \tilde{t}_{(34) \delta}^{(2) \lambda}+\epsilon_{\delta \lambda \sigma \nu} \tilde{t}_{(34) \gamma}^{(2) \lambda}\right] p_{\psi}^{\sigma} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{\left(K^{*}\right)} f_{(34)}^{\left(K_{2}^{*}\right)}\right. \\
& \left.-\left[\epsilon_{\gamma \lambda \sigma \nu} \tilde{t}_{(12) \delta}^{(2) \lambda}+\epsilon_{\delta \lambda \sigma \nu} \tilde{t}_{(12) \gamma}^{(2) \lambda}\right] p_{\psi}^{\sigma} \tilde{t}_{(34)}^{(1) \nu} f_{(34)}^{\left(K^{*}\right)} f_{(12)}^{\left(K_{2}^{*}\right)}\right\}, \\
& \left\langle K^{*} K_{2}^{*} \mid 23\right\rangle=P^{(3) \mu \alpha \beta \gamma \delta \nu}\left(p_{\psi}\right) \tilde{T}_{((12)(34)) \alpha \beta}^{(2)} \\
& \cdot\left[\tilde{t}_{(34) \gamma \delta}^{(2)} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{\left(K^{*}\right)} f_{(34)}^{\left(K_{2}^{*}\right)}-\tilde{t}_{(12) \gamma \delta}^{(2)} \tilde{t}_{(34) \nu}^{(1)} f_{(34)}^{\left(K^{*}\right)} f_{(12)}^{\left(K_{2}^{*}\right)}\right], \tag{57}\\
& \left\langle K^{*} K_{2}^{*} \mid 43\right\rangle=\tilde{T}_{((12)(34))}^{(4) \mu \nu \lambda \sigma}\left[\tilde{t}_{(12) \nu}^{(1)} \tilde{t}_{(34) \lambda \sigma}^{(2)} f_{(12)}^{\left(K^{*}\right)} f_{(34)}^{\left(K_{2}^{*}\right)}\right. \\
& \left.-\tilde{t}_{(34) \nu}^{(1)} \tilde{t}_{(12) \lambda \sigma}^{(2)} f_{(34)}^{\left(K^{*}\right)} f_{(12)}^{\left(K_{2}^{*}\right)}\right], \\
& \left\langle K_{0}^{*} K_{0}^{*^{\prime}} \mid 10\right\rangle=\tilde{T}_{((12)(34))}^{(1) \mu}\left[f_{(12)}^{K_{0}^{*}} f_{(34)}^{K_{0}^{*^{\prime}}}+f_{(34)}^{K_{0}^{*}} f_{(12)}^{K_{0}^{* \prime}}\right], \\
& \left\langle K_{0}^{*} K_{2}^{*} \mid 12\right\rangle=\tilde{T}_{((12)(34)) \nu}^{(1)}\left[\tilde{t}_{(34)}^{(2) \mu \nu} f_{(12)}^{\left(K_{0}^{*}\right)} f_{(34)}^{\left(K_{2}^{*}\right)}\right. \\
& \left.+\tilde{t}_{(12)}^{(2) \mu \nu} f_{(34)}^{\left(K_{0}^{*}\right)} f_{(12)}^{\left(K_{2}^{*}\right)}\right], \\
& \left\langle K_{0}^{*} K_{2}^{*} \mid 32\right\rangle=\tilde{T}_{((12)(34))}^{(3) \mu \nu \lambda}\left[\tilde{t}_{(34) \nu \lambda}^{(2)} f_{(12)}^{\left(K_{0}^{*}\right)} f_{(34)}^{\left(K_{2}^{*}\right)}\right. \\
& \left.+\tilde{t}_{(12) \nu \lambda}^{(2)} f_{(34)}^{\left(K_{0}^{*}\right)} f_{(12)}^{\left(K_{2}^{*}\right)}\right],
\end{align*}
$$

$$
\begin{align*}
\left\langle K^{*} K^{*^{\prime}} \mid 10\right\rangle= & \tilde{T}_{((12)(34))}^{(1) \mu} \tilde{t}_{(12)}^{(1) \alpha} \tilde{t}_{(34) \alpha}^{(1)} \\
& \cdot\left[f_{(12)}^{K^{*}} f_{(34)}^{K^{*^{\prime}}}+f_{(34)}^{K^{*}} f_{(12)}^{K^{*^{\prime}}}\right] \tag{62}\\
\left\langle K^{*} K^{*^{\prime}} \mid 11\right\rangle= & \epsilon^{\mu \alpha \beta \gamma} p_{\psi \alpha} \epsilon_{\beta \nu \lambda \sigma} p_{\psi}^{\nu} \tilde{t}_{(12)}^{(1) \tilde{t}_{(34)}^{(1) \sigma}} \tilde{T}_{((12)(34)) \gamma}^{(1)} \\
& \cdot\left[f_{(12)}^{K^{*}} f_{(34)}^{K^{*^{\prime}}}-f_{(34)}^{K^{*}} f_{(12)}^{K^{*_{2}}}\right], \tag{63}\\
\left\langle K^{*} K^{*^{\prime}} \mid 12\right\rangle= & P^{(2) \mu \nu \alpha \beta}\left(p_{\psi}\right) \tilde{t}_{(12) \alpha}^{(1)} \tilde{t}_{(34) \beta}^{(1)} \tilde{T}_{((12)(34)) \nu}^{(1)} \\
& \cdot\left[f_{(12)}^{K^{*}} f_{(34)}^{K^{*^{\prime}}}+f_{(34)}^{K^{*}} f_{(12)}^{K^{*^{\prime}}}\right], \tag{64}\\
\left\langle K^{*} K^{*^{\prime}} \mid 32\right\rangle= & \tilde{T}_{((12)(34))}^{(3) \mu \lambda} \tilde{t}_{(12))}^{(1)} \tilde{t}_{(34) \lambda}^{(1)} \\
& \cdot\left[f_{(12)}^{K^{*}} f_{(34)}^{K^{*^{\prime}}}+f_{(34)}^{K^{*}} f_{(12)}^{K^{*^{\prime}}}\right] . \tag{65}
\end{align*}
$$

Smaller contribution from $K K_{2}^{*}$ with $K_{2}^{*} \rightarrow K^{*} \pi$ or $K \rho$ and some other intermediate states may also need to be considered.

$2.6 \psi \rightarrow \phi \pi^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

As for the $\psi \rightarrow \phi \pi^{+} \pi^{-}$channel, the dominant intermediate states are also ϕf_{0} and ϕf_{2}. The f_{0}-resonances decay to $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$usually through $\sigma \sigma$ and $\rho \rho$; and the f_{2}-resonances decay to $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$usually through $\sigma \sigma$, $\rho \rho$ and $f_{2}(1270) \sigma$. We assume a similar notation to the $\psi \rightarrow \phi \pi^{+} \pi^{-}$case and number the additional $\pi^{+} \pi^{-}$as particle 5, 6 . Then the corresponding partial-wave amplitudes involving $f_{J} \rightarrow \sigma \sigma$ are

$$
\begin{align*}
\left\langle\phi f_{0} \mid 01\right\rangle_{(\sigma \sigma)}= & \tilde{t}_{(12)}^{(1) \mu} f_{(12)}^{(\phi)} f_{(\sigma \sigma)}^{\left(f_{0}\right)}\left[f_{(34)}^{(\sigma)} f_{(56)}^{(\sigma)}+f_{(36)}^{(\sigma)} f_{(45)}^{(\sigma)}\right], \tag{66}\\
\left\langle\phi f_{0} \mid 21\right\rangle_{(\sigma \sigma)}= & \tilde{T}_{\left(\phi f_{0}\right)}^{(2) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(\sigma \sigma)}^{\left(f_{0}\right)} \\
& \cdot\left[f_{(34)}^{(\sigma)} f_{(56)}^{(\sigma)}+f_{(36)}^{(\sigma)} f_{(45)}^{(\sigma)}\right], \tag{67}\\
\left\langle\phi f_{2} \mid 01\right\rangle_{(\sigma \sigma)}= & T_{(\sigma \sigma)}^{\left(f_{2}\right) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(\sigma \sigma)}^{\left(f_{2}\right)}, \tag{68}\\
\left\langle\phi f_{2} \mid 21\right\rangle_{(\sigma \sigma)}= & \tilde{T}_{\left(\phi f_{2}\right)}^{(2) \mu \alpha} \tilde{T}_{(\sigma \sigma) \alpha \nu}^{\left(f_{2}\right)} \tilde{t}_{(12) \nu}^{(1) \nu} f_{(12)}^{(\phi)} f_{(\sigma \sigma)}^{\left(f_{2}\right)}, \tag{69}\\
\left\langle\phi f_{2} \mid 22\right\rangle_{(\sigma \sigma)}= & \epsilon^{\mu \alpha \beta \gamma} p_{\psi \alpha} \tilde{T}_{\left(\phi f_{2}\right) \beta}^{(2)}\left[\epsilon_{\gamma \lambda \sigma \nu} \tilde{T}_{(\sigma \sigma) \delta}^{\left(f_{2}\right) \lambda}\right. \\
& \left.+\epsilon_{\delta \lambda \sigma \nu} \tilde{T}_{(\sigma \sigma) \gamma}^{\left(f_{2}\right) \lambda}\right] p_{\psi}^{\sigma} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(\sigma \sigma)}^{\left(f_{2}\right)}, \tag{70}
\end{align*}
$$

$$
\left\langle\phi f_{2} \mid 23\right\rangle_{(\sigma \sigma)}=P^{(3) \mu \alpha \beta \gamma \delta \nu}\left(p_{\psi}\right) \tilde{T}_{\left(\phi f_{2}\right) \alpha \beta}^{(2)}
$$

$$
\cdot \tilde{T}_{(\sigma \sigma) \gamma \delta}^{\left(f_{2}\right)} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(\sigma \sigma)}^{\left(f_{2}\right)},
$$

$$
\begin{equation*}
\left\langle\phi f_{2} \mid 43\right\rangle_{(\sigma \sigma)}=\tilde{T}_{\left(\phi f_{2}\right)}^{(4) \mu \nu \sigma} \tilde{t}_{(12) \nu}^{(1)} T_{(\sigma \sigma) \lambda \sigma}^{\left(f_{2}\right)} f_{(12)}^{(\phi)} f_{(\sigma \sigma)}^{\left(f_{2}\right)} \tag{71}
\end{equation*}
$$

with

$$
\begin{equation*}
T_{(\sigma \sigma)}^{\left(f_{2}\right) \mu \nu}=\tilde{t}_{\left(\sigma_{34} \sigma_{56}\right)}^{(2) \mu \nu} f_{(34)}^{(\sigma)} f_{(56)}^{(\sigma)}+\tilde{t}_{\left(\sigma_{36} \sigma_{45}\right)}^{(2) \mu \nu} f_{(36)}^{(\sigma)} f_{(45)}^{(\sigma)} \tag{73}
\end{equation*}
$$

For $f_{J} \rightarrow \rho \rho$, if we limit $\rho \rho$ to a relative $l=0$ state, then the corresponding partial-wave amplitudes are

$$
\begin{aligned}
& \left\langle\phi f_{0} \mid 01\right\rangle_{(\rho \rho)}=\tilde{t}_{(12)}^{(1) \mu} f_{(12)}^{(\phi)} f_{(\rho \rho)}^{\left(f_{0}\right)}\left[f_{(34)}^{(\rho)} f_{(56)}^{(\rho)} \tilde{t}_{(34)}^{(1) \alpha \beta} \tilde{t}_{(56) \alpha \beta}^{(1)}\right. \\
& \left.+f_{(36)}^{(\rho)} f_{(45)}^{(\rho)} \tilde{t}_{(36)}^{(1) \alpha \beta} \tilde{t}_{(45) \alpha \beta}^{(1)}\right],
\end{aligned}
$$

$$
\begin{align*}
& \left.+f_{(36)}^{(\rho)} f_{(45)}^{(\rho)} \tilde{t}_{(36)}^{(1) \alpha \beta} \tilde{t}_{(45) \alpha \beta}^{(1)}\right], \tag{75}\\
& \left\langle\phi f_{2} \mid 01\right\rangle_{(\rho \rho)}=T_{(\rho \rho)}^{\left(f_{2}\right) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(\rho \rho)}^{\left(f_{2}\right)}, \tag{76}\\
& \left\langle\phi f_{2} \mid 21\right\rangle_{(\rho \rho)}=\tilde{T}_{\left(\phi f_{2}\right)}^{(2) \mu \alpha} \tilde{T}_{(\rho \rho) \alpha \nu}^{\left(f_{2}\right)} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(\rho \rho)}^{\left(f_{2}\right)} \text {, } \tag{77}\\
& \left\langle\phi f_{2} \mid 22\right\rangle_{(\rho \rho)}=\epsilon^{\mu \alpha \beta \gamma} p_{\psi \alpha} \tilde{T}_{\left(\phi f_{2}\right) \beta}^{(2) \delta}\left[\epsilon_{\gamma \lambda \sigma \nu} \tilde{T}_{(\rho \rho) \delta}^{\left(f_{2}\right) \lambda}\right. \\
& \left.+\epsilon_{\delta \lambda \sigma \nu} \tilde{T}_{(\rho \rho) \gamma}^{\left(f_{2}\right) \lambda}\right] p_{\psi}^{\sigma} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{(\rho \rho)}^{\left(f_{2}\right)}, \tag{78}\\
& \left\langle\phi f_{2} \mid 23\right\rangle_{(\rho \rho)}=P^{(3) \mu \alpha \beta \gamma \delta \nu}\left(p_{\psi}\right) \tilde{T}_{\left(\phi f_{2}\right) \alpha \beta}^{(2)} \\
& \text { - } \tilde{T}_{(\rho \rho) \gamma \delta}^{\left(f_{2}\right)} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{(\rho \rho)}^{\left(f_{2}\right)}, \tag{79}\\
& \left\langle\phi f_{2} \mid 43\right\rangle_{(\rho \rho)}=\tilde{T}_{\left(\phi f_{2}\right)}^{(4) \mu \nu \sigma} \tilde{t}_{(12) \nu}^{(1)} T_{(\rho \rho) \lambda \sigma}^{\left(f_{2}\right)} f_{(12)}^{(\phi)} f_{(\rho \rho)}^{\left(f_{2}\right)}, \tag{80}
\end{align*}
$$

where

$$
\begin{align*}
T_{(\rho \rho)}^{\left(f_{2}\right) \mu \nu}= & P^{(2) \mu \nu \alpha \beta}\left(p_{f_{2}}\right)\left[\tilde{t}_{(34) \alpha}^{(1)} \tilde{t}_{(56) \beta}^{(1)} f_{(34)}^{(\rho)} f_{(56)}^{(\rho)}\right. \\
& \left.+\tilde{t}_{(36) \alpha}^{(1)} \tilde{t}_{(45) \beta}^{(1)} f_{(36)}^{(\rho)} f_{(45)}^{(\rho)}\right] . \tag{81}
\end{align*}
$$

For $f_{2} \rightarrow f_{2}(1270) \sigma$, if we also limit $f_{2}(1270) \sigma$ to the $l=0$ state, then we have the corresponding partial-wave amplitudes:

$$
\begin{align*}
\left\langle\phi f_{2} \mid 01\right\rangle_{\left(f_{2} \sigma\right)}= & T_{\left(f_{2} \sigma\right)}^{\left(f_{2}\right) \mu \nu} \tilde{t}_{(12) \nu}^{(1)} f_{(12)}^{(\phi)} f_{\left(f_{2} \sigma\right)}^{\left(f_{2}\right)}, \tag{82}\\
\left\langle\phi f_{2} \mid 21\right\rangle_{\left(f_{2} \sigma\right)}= & \tilde{T}_{\left(\phi f_{2}\right)}^{(2) \mu} \tilde{T}_{\left(f_{2} \sigma\right) \alpha \nu}^{\left(f_{2}\right)} \tilde{t}_{(12)}^{(1)} f_{(12)}^{(\phi)} f_{\left(f_{2} \sigma\right)}^{\left(f_{2}\right)}, \tag{83}\\
\left\langle\phi f_{2} \mid 22\right\rangle_{\left(f_{2} \sigma\right)}= & \epsilon^{\mu \alpha \beta \gamma} p_{\psi \alpha} \tilde{T}_{\left(\phi f_{2}\right) \beta}^{(2) \delta}\left[\epsilon_{\gamma \lambda \sigma \nu} \tilde{T}_{\left(f_{2} \sigma\right) \delta}^{\left(f_{2}\right) \lambda}\right. \\
& \left.+\epsilon_{\delta \lambda \sigma \nu} \tilde{T}_{\left(f_{2} \sigma\right) \gamma}^{\left(f_{2}\right) \lambda}\right] p_{\psi}^{\sigma} \tilde{t}_{(12)}^{(1) \nu} f_{(12)}^{(\phi)} f_{\left(f_{2} \sigma\right)}^{\left(f_{2}\right)}, \tag{84}\\
\left\langle\phi f_{2} \mid 23\right\rangle_{\left(f_{2} \sigma\right)}= & P^{(3) \mu \alpha \beta \gamma \delta \nu}\left(p_{\psi}\right) \tilde{T}_{\left(\phi f_{2}\right) \alpha \beta}^{(2)} \\
& \cdot \tilde{T}_{\left(f_{2} \sigma\right) \gamma \delta}^{\left(f_{2}\right)} \tilde{t}_{{ }^{(12) \nu}(1)}^{(1)} f_{(12)}^{(\phi)} f_{\left(f_{2} \sigma\right)}^{\left(f_{2}\right)}, \tag{85}\\
\left\langle\phi f_{2} \mid 43\right\rangle_{\left(f_{2} \sigma\right)}= & \tilde{T}_{\left(\phi f_{2}\right)}^{(4) \mu \nu \sigma \tilde{t}_{(12) \nu}^{(1)} T_{\left(f_{2} \sigma\right) \lambda \sigma}^{\left(f_{2}\right)} f_{(12)}^{(\phi)} f_{\left(f_{2} \sigma\right)}^{\left(f_{2}\right)}} \tag{86}
\end{align*}
$$

with

$$
\begin{align*}
T_{\left(f_{2} \sigma\right)}^{\left(f_{2}\right) \mu \nu}= & P^{(2) \mu \nu \alpha \beta}\left(p_{f_{2}}\right) \\
& \cdot\left[\tilde{t}_{(34) \alpha \beta}^{(2)} f_{(34)}^{\left(f_{2}\right)} f_{(56)}^{(\sigma)}+\tilde{t}_{(56) \alpha \beta}^{(2)} f_{(56)}^{\left(f_{2}\right)} f_{(34)}^{(\sigma)}\right. \\
& \left.+\tilde{t}_{(36) \alpha \beta}^{(2)} f_{(36)}^{\left(f_{2}\right)} f_{(45)}^{(\sigma)}+\tilde{t}_{(45) \alpha \beta}^{(2)} f_{(45)}^{\left(f_{2}\right)} f_{(36)}^{(\sigma)}\right] . \tag{87}
\end{align*}
$$

Unlike the $\psi \rightarrow \phi \pi^{+} \pi^{-}$channel, for $\psi \rightarrow \phi \pi^{+} \pi^{-} \pi^{+} \pi^{-}$it is possible to go through 0^{-+}resonances $\left(\eta^{*}\right)$ decaying to $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$through $\rho \rho$. The corresponding partial wave
is

$$
\begin{align*}
U_{\eta^{*}}^{\mu}= & \epsilon^{\mu \nu \alpha \beta} \tilde{t}_{(12) \nu}^{(1)} \tilde{T}_{\left(\phi \eta^{*}\right) \alpha}^{(1)} p_{\psi \beta} \epsilon_{\tau \sigma \gamma \eta} p_{3}^{\tau} p_{4}^{\sigma} p_{5}^{\gamma} p_{6}^{\eta} \\
& \cdot\left[f_{(34)}^{(\rho)} f_{(56)}^{(\rho)} B_{1}\left(Q_{\rho 34}\right) B_{1}\left(Q_{\rho 56}\right) B_{1}\left(Q_{\eta^{*} \rho_{34} \rho_{56}}\right)\right. \\
& \left.-f_{(36)}^{(\rho)} f_{(45)}^{(\rho)} B_{1}\left(Q_{\rho 36}\right) B_{1}\left(Q_{\rho 45}\right) B_{1}\left(Q_{\eta^{*} \rho_{36} \rho_{45}}\right)\right] . \tag{88}
\end{align*}
$$

Besides partial-wave amplitudes given above, for $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$final states, there are many other possible intermediate states, such as $a_{2} \pi, a_{1} \pi, \pi(1300) \pi$ etc. Before performing the partial-wave analysis, one should check various invariant mass spectra to see what resonances are present in the data and add the corresponding partialwave amplitudes.

3 Formalism for ψ radiative decay to mesons

We denote the ψ polarization four-vector by $\psi_{\mu}\left(m_{1}\right)$ and the polarization vector of the photon by $e_{\nu}\left(m_{2}\right)$. Then the general form for the decay amplitude is

$$
\begin{equation*}
A=\psi_{\mu}\left(m_{1}\right) e_{\nu}^{*}\left(m_{2}\right) A^{\mu \nu}=\psi_{\mu}\left(m_{1}\right) e_{\nu}^{*}\left(m_{2}\right) \sum_{i} \Lambda_{i} U_{i}^{\mu \nu} \tag{89}
\end{equation*}
$$

For the photon polarization four-vector e_{ν} with photon momentum q, there is the usual Lorentz orthogonality condition $e_{\nu} q^{\nu}=0$. This is the same as for a massive vector meson. However, for the photon, there is an additional gauge invariance condition. Here we assume the Coulomb gauge in the ψ rest system, i.e., $e_{\nu} p_{\psi}^{\nu}=0$. Then we have [13]

$$
\begin{align*}
\sum_{m} e_{\mu}^{*}(m) e_{\nu}(m)= & -g_{\mu \nu}+\frac{q_{\mu} K_{\nu}+K_{\mu} q_{\nu}}{q \cdot K} \\
& -\frac{K \cdot K}{(q \cdot K)^{2}} q_{\mu} q_{\nu} \equiv-g_{\mu \nu}^{(\perp \perp)} \tag{90}
\end{align*}
$$

with $K=p_{\psi}-q$ and $e_{\nu} K^{\nu}=0$. The radiative decay cross-section is

$$
\begin{align*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{n}} & =\frac{1}{2} \sum_{m_{1}=1}^{2} \sum_{m_{2}=1}^{2} \psi_{\mu}\left(m_{1}\right) e_{\nu}^{*}\left(m_{2}\right) A^{\mu \nu} \psi_{\mu^{\prime}}^{*}\left(m_{1}\right) e_{\nu^{\prime}}\left(m_{2}\right) A^{* \mu^{\prime} \nu^{\prime}} \\
& =-\frac{1}{2} \sum_{m_{1}=1}^{2} \psi_{\mu}\left(m_{1}\right) \psi_{\mu^{\prime}}^{*}\left(m_{1}\right) g_{\nu \nu^{\prime}}^{(\perp \perp)} A^{\mu \nu} A^{* \mu^{\prime} \nu^{\prime}} \\
& =-\frac{1}{2} \sum_{\mu=1}^{2} A_{\mu \nu} g_{\nu \nu^{\prime}}^{(\perp \perp)} A^{* \mu \nu^{\prime}} \\
& =-\frac{1}{2} \sum_{i, j} \Lambda_{i} \Lambda_{j}^{*} \sum_{\mu=1}^{2} U_{i}^{\mu \nu} g_{\nu \nu^{\prime}}^{(\perp \perp)} U_{j}^{* \mu \nu^{\prime}} \equiv \sum_{i, j} P_{i j} \cdot F_{i j} \tag{91}
\end{align*}
$$

where

$$
\begin{align*}
P_{i j} & =P_{j i}^{*}=\Lambda_{i} \Lambda_{j}^{*} \tag{92}\\
F_{i j} & =F_{j i}^{*}=-\frac{1}{2} \sum_{\mu=1}^{2} U_{i}^{\mu \nu} g_{\nu \nu^{\prime}}^{(\perp \perp)} U_{j}^{* \mu \nu^{\prime}} \tag{93}
\end{align*}
$$

Due to the special properties (massless and gauge invariance) of the photon, the number of independent partial-wave amplitudes for a ψ radiative decay is smaller than for the corresponding decay to a massive vector meson. For example, for $\psi \rightarrow \phi f_{0}$, there are two independent partial-wave amplitudes with orbital angular momentum $L=0$ and 2 , respectively, which give different angular distributions; but for $\psi \rightarrow \gamma f_{0}$, with the gauge invariance condition, the two amplitudes will give the same angular distribution. So, for the ψ radiative decay, the L-S scheme is not useful any more for choosing independent amplitudes. One may simply use momenta of the particles to construct covariant tensor amplitudes; it is sufficient to check the helicity amplitudes to make sure there is the right number of independent amplitudes. From the helicity formalism, it is easy to show that there is one independent amplitude for ψ radiative decay to a spin-0 meson, two independent amplitudes for ψ radiative decay to a spin- 1 meson, and three independent amplitudes for ψ radiative decay to a meson with spin larger than 1 .

3.1ψ radiative decay to two pseudoscalar mesons

We denote the two pseudoscalar mesons as π^{+}and π^{-}. For the decay vertex $\psi \rightarrow \gamma f_{J}$, there are two independent momenta which we choose to be p_{ψ} and the momentum of the photon q. We use these two momenta and the spin wave functions of the three particles to construct the covariant tensor amplitudes.

For $\psi \rightarrow \gamma f_{0}$, the e_{μ} can only contract with ψ^{μ} since $e_{\mu} p_{\psi}^{\mu}=e_{\mu} q^{\mu}=0 ;$ hence there is only one independent amplitude:

$$
\begin{equation*}
U_{\gamma f_{0}}^{\mu \nu}=g^{\mu \nu} f^{\left(f_{0}\right)} \tag{94}
\end{equation*}
$$

For $\psi \rightarrow \gamma f_{2}$ or $\psi \rightarrow \gamma f_{4}, e_{\mu}$ may contract with ψ^{μ} or with the spin wave function of f_{J}. Then ψ^{μ} may contract with e_{μ}, or q_{μ}, or the spin wave function of f_{J}; this gives three independent covariant tensor amplitudes for each f_{J} :

$$
\begin{align*}
U_{\left(\gamma f_{2}\right) 1}^{\mu \nu} & =\tilde{t}^{\left(f_{2}\right) \mu \nu} f^{\left(f_{2}\right)} \tag{95}\\
U_{\left(\gamma f_{2}\right) 2}^{\mu \nu} & =g^{\mu \nu} p_{\psi}^{\alpha} p_{\psi}^{\beta} \tilde{t}_{\alpha \beta}^{\left(f_{2}\right)} B_{2}\left(Q_{\Psi \gamma f_{2}}\right) f^{\left(f_{2}\right)}, \tag{96}\\
U_{\left(\gamma f_{2}\right) 3}^{\mu \nu} & =q^{\mu} \tilde{t}_{\alpha}^{\left(f_{2}\right) \nu} p_{\psi}^{\alpha} B_{2}\left(Q_{\psi \gamma f_{2}}\right) f^{\left(f_{2}\right)}, \tag{97}\\
U_{\left(\gamma f_{4}\right) 1}^{\mu \nu} & =\tilde{t}_{\alpha \beta}^{\left(f_{4}\right) \mu \nu} p_{\psi}^{\alpha} p_{\psi}^{\beta} B_{2}\left(Q_{\Psi \gamma f_{4}}\right) f^{\left(f_{4}\right)}, \tag{98}\\
U_{\left(\gamma f_{4}\right) 2}^{\mu \nu} & =g^{\mu \nu} \tilde{t}_{\alpha \beta \gamma \delta}^{\left(f_{4}\right)} p_{\psi}^{\alpha} p_{\psi}^{\beta} p_{\psi}^{\gamma} p_{\psi}^{\delta} B_{4}\left(Q_{\psi \gamma f_{4}}\right) f^{\left(f_{4}\right)}, \tag{99}\\
U_{\left(\gamma f_{4}\right) 3}^{\mu \nu} & =q^{\mu} \tilde{t}_{\alpha \beta \gamma}^{\left(f_{4}\right) \nu} p_{\psi}^{\alpha} p_{\psi}^{\beta} p_{\psi}^{\gamma} B_{4}\left(Q_{\Psi \gamma f_{4}}\right) f^{\left(f_{4}\right)}, \tag{100}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{t}_{\mu_{1} \cdots \mu_{J}}^{\left(f_{J}\right)}= & \sum_{m} \phi_{\mu_{1} \cdots \mu_{J}}\left(p_{f_{J}}, m\right) \\
& \cdot \phi_{\mu_{1}^{\prime} \cdots \mu_{J}^{\prime}}\left(p_{f_{J}}, m\right) r_{\pi}^{\mu_{1}^{\prime}} \cdots r_{\pi}^{\mu_{J}^{\prime}} B_{J}\left(Q_{f_{J} \pi \pi}\right) \\
= & P_{\mu_{1} \cdots \mu_{J} \mu_{1}^{\prime} \cdots \mu_{J}^{\prime}}\left(p_{f_{J}}\right) r_{\pi}^{\mu_{1}^{\prime}} \cdots r_{\pi}^{\mu_{J}^{\prime}} B_{J}\left(Q_{f_{J} \pi \pi}\right) \tag{101}
\end{align*}
$$

with $J=0,2$; here r_{π} represents the relative momentum between two pseudoscalar mesons.

We use p_{ψ} instead of q to contract with $\tilde{t}\left(f_{J}\right)$ because $q \tilde{t}^{\left(f_{J}\right)}=p_{\psi} \tilde{t}^{\left(f_{J}\right)}$ and p_{ψ} has only a time component in the ψ rest system. This makes the calculation simpler.

$3.2 \psi \rightarrow \gamma \eta \pi^{+} \pi^{-}$

This is a three-step process: $\psi \rightarrow \gamma X$ with $X \rightarrow y z$ and $y \rightarrow \pi \pi$ or $y \rightarrow \eta \pi$. The amplitudes $U_{\mu \nu}^{i}$ are listed using the notation

$$
\begin{equation*}
\left\langle\gamma J^{P C} \mid(y z) i\right\rangle \tag{102}
\end{equation*}
$$

where J, P, C are the intrinsic spin, parity and C-parity of the X-particle, respectively. We denote π^{+}, π^{-}, η as 1 , 2,3 , respectively. The possible $J^{P C}$ for X are $0^{-+}, 1^{++}$, $1^{-+}, 2^{++}, 2^{-+}, 3^{++}, 3^{-+}$, etc. For invariant mass below 2 GeV , we consider J up to 2 . For $\psi \rightarrow \gamma X$, we choose two independent momenta p_{ψ} for ψ and q for the photon to be contracted with spin wave functions.

For the $\psi \rightarrow \gamma 0^{-+}$vertex, there is only one independent coupling, $\epsilon_{\mu \nu \lambda \sigma} \psi^{\mu} e^{\nu} q^{\lambda} p_{\psi}^{\sigma}$. With various possible $y z$ states, we have $U_{\mu \nu}^{i}$ for $\psi \rightarrow \gamma 0^{-} \rightarrow \eta \pi^{+} \pi^{-}$as follows:

$$
\begin{align*}
\left\langle\gamma 0^{-+} \mid\left(f_{0} \eta\right) 1\right\rangle= & S_{\mu \nu} B_{1}\left(Q_{\psi \gamma X}\right) f_{(12)}^{\left(f_{0}\right)}, \tag{103}\\
\left\langle\gamma 0^{-+} \mid\left(a_{0} \pi\right) 1\right\rangle= & S_{\mu \nu} B_{1}\left(Q_{\psi \gamma X}\right)\left(f_{(13)}^{\left(a_{0}\right)}+f_{(23)}^{\left(a_{0}\right)}\right), \tag{104}\\
\left\langle\gamma 0^{-+} \mid\left(f_{2} \eta\right) 1\right\rangle= & S_{\mu \nu} B_{1}\left(Q_{\psi \gamma X}\right) f_{(12)}^{\left(f_{2}\right)} \tilde{t}_{\left(f_{2} \eta\right) \gamma \delta \delta}^{(2)} \tilde{t}_{(12)}^{(2) \gamma \delta}, \tag{105}\\
\left\langle\gamma 0^{-+} \mid\left(a_{2} \pi\right) 1\right\rangle= & S_{\mu \nu} B_{1}\left(Q_{\psi \gamma X}\right)\left\{f_{(13)}^{\left(a_{2}\right)} \tilde{t}_{\left(a_{2} 2\right) \gamma \delta}^{(2)} \tilde{t}_{(13)}^{(2) \gamma \delta \delta}\right. \\
& \left.+f_{(23)}^{\left(a_{2}\right)} \tilde{t}_{\left(a_{2} 1\right) \gamma \delta}^{(2)} \tilde{t}_{(23)}^{(2) \gamma \delta}\right\} \tag{106}
\end{align*}
$$

with $S_{\mu \nu}$ defined as

$$
\begin{equation*}
S_{\mu \nu}=\epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} q^{\beta} \tag{107}
\end{equation*}
$$

For the $\psi \rightarrow \gamma 1^{++}$vertex, there are two independent couplings for each $y z$:

$$
\begin{align*}
\left\langle\gamma 1^{++} \mid\left(f_{0} \eta\right) 1\right\rangle= & \epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} \tilde{t}_{\left(\eta f_{0}\right)}^{(1) \beta} f_{(12)}^{\left(f_{0}\right)}, \tag{108}\\
\left\langle\gamma 1^{++} \mid\left(a_{0} \pi\right) 1\right\rangle= & \epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha}\left(\tilde{t}_{\left(a_{0} 1\right)}^{(1) \beta} f_{(23)}^{\left(a_{0}\right)}+\tilde{t}_{\left(a_{0} 2\right)}^{(1) \beta} f_{(13)}^{\left(a_{0}\right)}\right), \tag{109}\\
\left\langle\gamma 1^{++} \mid\left(f_{0} \eta\right) 2\right\rangle= & q_{\mu} S_{\nu \beta} \tilde{t}_{\left(\eta f_{0}\right)}^{(1) \beta} B_{2}\left(Q_{\psi \gamma X}\right) f_{(12)}^{\left(f_{0}\right),} \tag{110}\\
\left\langle\gamma 1^{++} \mid\left(a_{0} \pi\right) 2\right\rangle= & q_{\mu} S_{\nu \beta} B_{2}\left(Q_{\psi \gamma X}\right) \\
& \cdot\left[t_{\left(a_{0} 1\right)}^{(1) \beta} f_{(23)}^{\left(a_{0}\right)}+t_{\left(a_{0} 2\right)}^{(1) \beta} f_{(13)}^{\left(a_{0}\right)}\right], \tag{111}\\
\left\langle\gamma 1^{++} \mid\left(f_{2} \eta\right) 1\right\rangle= & \epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} \tilde{g}_{X}^{\beta \gamma} \tilde{t}_{(12) \gamma \delta}^{(2)} \tilde{t}_{\left(\eta f_{2}\right)}^{(1) \delta} f_{(12)}^{\left(f_{2}\right),} \tag{112}\\
\left\langle\gamma 1^{++} \mid\left(a_{2} \pi\right) 1\right\rangle= & \epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} \tilde{g}_{X}^{\beta \gamma}\left[\tilde{t}_{(13) \gamma \delta}^{(2)} \tilde{t}_{\left(a_{2} 2\right)}^{(1) \delta} f_{(13)}^{\left(a_{2}\right)}\right. \\
& \left.+\tilde{t}_{(23) \gamma \delta}^{(2)} \tilde{t}_{\left(a_{2} 1\right)}^{(1) \delta} f_{(23)}^{\left(a_{2}\right)}\right] \tag{113}\\
\left\langle\gamma 1^{++} \mid\left(f_{2} \eta\right) 2\right\rangle= & q_{\mu} S_{\nu \beta} \tilde{g}_{X}^{\beta \beta^{\prime}} \tilde{t}_{(12) \beta^{\prime} \alpha^{\prime}} \tilde{t}_{\left(\eta f_{2}\right)}^{(1) \alpha^{\prime}} B_{2}\left(Q_{\psi \gamma X}\right) f_{(12)}^{\left(f_{2}\right)}, \\
\left\langle\gamma 1^{++} \mid\left(a_{2} \pi\right) 2\right\rangle= & q_{\mu} S_{\nu \beta} \tilde{g}_{X}^{\beta \beta^{\prime}} B_{2}\left(Q_{\psi \gamma X}\right) \tag{114}\\
\cdot & {\left[\tilde{t}_{(13) \beta^{\prime} \alpha^{\prime}}^{(2)} \tilde{t}_{\left(a_{2} 2\right)}^{(1) \alpha^{\prime}} f_{(13)}^{\left(a_{2}\right)}+\tilde{t}_{(23) \beta^{\prime} \alpha^{\prime}}^{(2)} \tilde{t}_{\left(a_{2} 1\right)}^{(1) \alpha^{\prime}} f_{(23)}^{\left(a_{2}\right)}\right], } \tag{115}
\end{align*}
$$

where $\tilde{g}_{X}^{\alpha \beta}=g^{\alpha \beta}-\frac{p_{X}^{\alpha} p_{X}^{\beta}}{p_{X}^{2}}$. For 1^{++}decaying to $f_{2} \eta$ and $a_{2} \pi$, the orbital angular momentum l could be 1 and 3 ; but we ignore the $l=3$ contribution because of the strong centrifugal barrier.

For $\psi \rightarrow \gamma 1^{-+}$, the exotic 1^{-+}meson cannot decay into $f_{0} \eta$ and $a_{0} \pi$. We have four $U_{\mu \nu}^{i}$ amplitudes here:

$$
\begin{align*}
\left\langle\gamma 1^{-+} \mid\left(f_{2} \eta\right) 1\right\rangle= & g_{\mu \nu} S_{\gamma \delta} \tilde{t}_{\left(\eta f_{2}\right)}^{(2) \gamma \sigma} \tilde{t}_{(12) \sigma}^{(2) \delta} f_{(12)}^{\left(f_{2}\right)} B_{1}\left(Q_{\psi \gamma X}\right), \tag{116}\\
\left\langle\gamma 1^{-+} \mid\left(a_{2} \pi\right) 1\right\rangle= & g_{\mu \nu} S_{\gamma \delta}\left[\tilde{t}_{\left(a_{2} 2\right)}^{(2) \gamma \sigma} \tilde{t}_{(13) \sigma}^{(2) \delta} f_{(13)}^{\left(a_{2}\right)}\right. \\
& \left.+\tilde{t}_{\left(a_{2} 1\right)}^{(2) \gamma \sigma} \tilde{t}_{(23) \sigma}^{(2) \delta} f_{(23)}^{\left(a_{2}\right)}\right] B_{1}\left(Q_{\psi \gamma X}\right), \tag{117}\\
\left\langle\gamma 1^{-+} \mid\left(f_{2} \eta\right) 2\right\rangle= & q_{\mu} \epsilon_{\nu \beta \gamma \delta} K^{\beta} \tilde{t}_{\left(\eta f_{2}\right)}^{(2) \gamma \sigma} \tilde{t}_{(12) \sigma}^{(2) \delta} f_{(12)}^{\left(f_{2}\right)} B_{1}\left(Q_{\psi \gamma X}\right), \tag{118}
\end{align*}
$$

$$
\begin{align*}
\left\langle\gamma 1^{-+} \mid\left(a_{2} \pi\right) 2\right\rangle= & q_{\mu} \epsilon_{\nu \beta \gamma \delta} K^{\beta}\left[\tilde{t}_{\left(a_{2} 2\right)}^{(2) \gamma \sigma} \tilde{t}_{(13) \sigma}^{(2) \delta} f_{(13)}^{\left(a_{2}\right)}\right. \\
& \left.+\tilde{t}_{\left(a_{2} 1\right)}^{(2) \gamma \sigma} \tilde{t}_{(23) \sigma}^{(2) \delta} f_{(23)}^{\left(a_{2}\right)}\right] B_{1}\left(Q_{\psi \gamma X}\right) . \tag{119}
\end{align*}
$$

For $\psi \rightarrow \gamma 2^{++}$, there are three independent couplings and two possible $y z$ states, $f_{2} \eta$ and $a_{2} \pi$:

$$
\begin{equation*}
\left\langle\gamma 2^{++} \mid\left(f_{2} \eta\right) 1\right\rangle=P_{\mu \nu \alpha \lambda}^{(2)}(K) \epsilon^{\alpha \beta \gamma \delta} K_{\beta} \tilde{t}_{\left(\eta f_{2}\right) \gamma}^{(1)} \tilde{t}_{(12) \delta}^{(2) \lambda} f_{(12)}^{\left(f_{2}\right)} \tag{120}
\end{equation*}
$$

$$
\begin{align*}
& \left\langle\gamma 2^{++} \mid\left(a_{2} \pi\right) 1\right\rangle=P_{\mu \nu \alpha \lambda}^{(2)}(K) \epsilon^{\alpha \beta \gamma \delta} K_{\beta} \\
& \quad \cdot\left[\tilde{t}_{\left(a_{2} 1\right) \gamma}^{(1)} \tilde{t}_{(23) \delta}^{(2) \lambda} f_{(23)}^{\left(a_{2}\right)}+\tilde{t}_{\left.\left(a_{2}\right) 2\right) \gamma}^{(1)} \tilde{t}_{(13) \delta}^{(2) \lambda} f_{(13)}^{\left(a_{2}\right)}\right], \tag{121}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\gamma 2^{++} \mid\left(f_{2} \eta\right) 2\right\rangle=g_{\mu \nu} p_{\psi}^{\lambda} p_{\psi}^{\sigma} P_{\lambda \sigma \alpha \beta}^{(2)}(K) B_{2}\left(Q_{\psi \gamma X}\right) \\
& \quad \cdot \epsilon_{\gamma \delta \alpha^{\prime}}^{\alpha} K^{\gamma} \tilde{t}_{\left(\eta f_{2}\right)}^{(1) \delta} \tilde{t}_{(12)}^{(2) \alpha^{\prime} \beta} f_{(12)}^{\left(f_{2}\right)}, \\
& \left\langle\gamma 2^{++} \mid\left(a_{2} \pi\right) 2\right\rangle=g_{\mu \nu} p_{\psi}^{\lambda} p_{\psi}^{\sigma} P_{\lambda \sigma \alpha \beta}^{(2)}(K) \epsilon_{\gamma \delta \alpha^{\prime}}^{\alpha} K^{\gamma} \\
& \quad \cdot\left[\tilde{t}_{\left(a_{2} 1\right) \delta}^{(1)} \tilde{t}_{(23)}^{(2) \alpha^{\prime} \lambda} f_{(23)}^{\left(a_{2}\right)}+\tilde{t}_{\left(a_{2} 2\right) \delta}^{(1)} \tilde{t}_{(13)}^{(2) \alpha^{\prime} \lambda} f_{(13)}^{\left(a_{2}\right)}\right] B_{2}\left(Q_{\psi \gamma X}\right), \tag{123}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\gamma 2^{++} \mid\left(f_{2} \eta\right) 3\right\rangle=q_{\mu} p_{\psi}^{\lambda} P_{\nu \lambda \alpha \beta}^{(2)}(K) B_{2}\left(Q_{\Psi \gamma X}\right) \\
& \quad \cdot \epsilon_{\gamma \delta \alpha^{\prime}}^{\alpha} K^{\gamma} \tilde{t}_{\left(\eta f_{2}\right)}^{(1) \delta} \tilde{t}_{(12)}^{(2) \alpha^{\prime} \beta} f_{(12)}^{\left(f_{2}\right)}, \tag{124}\\
& \left\langle\gamma 2^{++} \mid\left(a_{2} \pi\right) 3\right\rangle=q_{\mu} p_{\psi}^{\lambda} P_{\nu \lambda \alpha \beta}^{(2)}(K) \epsilon_{\gamma \delta \alpha^{\prime}}^{\alpha} K^{\gamma} \\
& \quad \cdot\left[\tilde{t}_{\left(a_{2} 1\right) \delta}^{(1)} \tilde{t}_{(23)}^{(2) \alpha^{\prime} \beta} f_{(23)}^{\left(a_{2}\right)}+\tilde{t}_{\left(a_{2} 2\right) \delta}^{(1)} \tilde{t}_{(13)}^{(2) \alpha^{\prime} \beta} f_{(13)}^{\left(a_{2}\right)}\right] B_{2}\left(Q_{\psi \gamma X}\right) . \tag{125}
\end{align*}
$$

For $\psi \rightarrow \gamma 2^{-+}$, we have

$$
\begin{align*}
& \left\langle\gamma 2^{-+} \mid\left(f_{0} \eta\right) 1\right\rangle=\epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} \tilde{t}_{\left(f_{0} \eta\right)}^{(2) \beta \gamma} q_{\gamma} f_{(12)}^{\left(f_{0}\right)} B_{1}\left(Q_{\psi \gamma X}\right),(\tag{126}\\
& \left\langle\gamma 2^{-+} \mid\left(a_{0} \pi\right) 1\right\rangle=\epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} \\
& \quad \cdot\left\{\tilde{t}_{\left(a_{0} 1\right)}^{(2) \beta \gamma} f_{(23)}^{\left(a_{0}\right)}+\tilde{t}_{\left(a_{0} 2\right)}^{(2) \beta \gamma} f_{(13)}^{\left(a_{0}\right)}\right\} q_{\gamma} B_{1}\left(Q_{\psi \gamma X}\right), \tag{127}\\
& \left\langle\gamma 2^{-+} \mid\left(f_{0} \eta\right) 2\right\rangle=S_{\mu \nu} p_{\psi \gamma} p_{\psi \gamma \delta} \tilde{t}_{\left(f_{0} \eta\right)}^{(2) \gamma \delta} f_{(12)}^{\left(f_{0}\right)} B_{3}\left(Q_{\psi \gamma X}\right), \tag{128}\\
& \left\langle\gamma 2^{-+} \mid\left(a_{0} \pi\right) 2\right\rangle=S_{\mu \nu} p_{\psi \gamma} p_{\psi \delta} \\
& \quad \cdot\left\{\tilde{t}_{\left(a_{0} 1\right)}^{(2) \gamma \delta} f_{(23)}^{\left(a_{0}\right)}+\tilde{t}_{\left(a_{0} 2\right)}^{(2) \gamma \delta} f_{(13)}^{\left(a_{0}\right)}\right\} B_{3}\left(Q_{\psi \gamma X}\right), \tag{129}\\
& \left\langle\gamma 2^{-+} \mid\left(f_{0} \eta\right) 3\right\rangle=q_{\mu} S_{\nu \gamma} \tilde{t}_{\left(f_{0} \eta\right)}^{(2) \gamma \delta} p_{\psi \delta} f_{(12)}^{\left(f_{0}\right)} B_{3}\left(Q_{\psi \gamma X}\right), \tag{130}\\
& \left\langle\gamma 2^{-+} \mid\left(a_{0} \pi\right) 3\right\rangle=q_{\mu} S_{\nu \gamma} p_{\psi \delta} \\
& \quad \cdot\left\{\tilde{t}_{\left(a_{0} 1\right)}^{(2) \gamma} f_{(23)}^{\left(a_{0}\right)}+\tilde{t}_{\left(a_{0} 2\right)}^{(2) \gamma \delta} f_{(13)}^{\left(a_{0}\right)}\right\} B_{3}\left(Q_{\Psi \gamma X}\right), \tag{131}\\
& \left\langle\gamma 2^{-+} \mid\left(f_{2} \eta\right) 1\right\rangle=\epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} q_{\gamma} P^{(2) \beta \gamma \beta^{\prime} \gamma^{\prime}}(K) \\
& \quad \cdot \tilde{t}_{(12) \beta^{\prime} \gamma^{\prime}}^{(2)} f_{(12)}^{\left(f_{2}\right)} B_{1}\left(Q_{\psi \gamma X}\right) \tag{132}\\
& \left\langle\gamma 2^{-+} \mid\left(a_{2} \pi\right) 1\right\rangle=\epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha} P^{(2) \beta \gamma \beta^{\prime} \gamma^{\prime}}(K) q_{\gamma} \\
& \quad \cdot B_{1}\left(Q_{\psi \gamma X}\right)\left[\tilde{t}_{(23) \beta^{\prime} \gamma^{\prime}}^{(2)} f_{(23)}^{\left(a_{2}\right)}+\tilde{t}_{(13) \beta^{\prime} \gamma^{\prime}}^{(2)} f_{(13)}^{\left(a_{2}\right)}\right], \tag{133}\\
& \left\langle\gamma 2^{-+} \mid\left(f_{2} \eta\right) 2\right\rangle=S_{\mu \nu} p_{\psi}^{\gamma} p_{\psi}^{\delta} P_{\gamma \delta \gamma^{\prime} \delta^{\prime}}^{(2)}(K) \\
& \quad \cdot \tilde{t}_{(12)}^{(2) \gamma^{\prime} \delta^{\prime}} f_{(12)}^{\left(f_{2}\right)} B_{3}\left(Q_{\psi \gamma X}\right), \tag{134}\\
& \left\langle\gamma 2^{-+} \mid\left(a_{2} \pi\right) 2\right\rangle=S_{\mu \nu} p_{\psi}^{\gamma} p_{\psi}^{\delta} P_{\gamma \delta \gamma^{\prime} \delta^{\prime}}^{(2)}(K) \\
& \quad \cdot B_{3}\left(Q_{\psi \gamma X}\right)\left[\tilde{t}_{(23)}^{(2) \gamma^{\prime} \delta^{\prime}} f_{(23)}^{\left(a_{2}\right)}+\tilde{t}_{(13)}^{(2) \gamma^{\prime} \delta^{\prime}} f_{(13)}^{\left(a_{2}\right)}\right], \tag{135}\\
& \left\langle\gamma 2^{-+} \mid\left(f_{2} \eta\right) 3\right\rangle=q_{\mu} S_{\nu \gamma} p_{\psi \delta} P^{(2) \gamma \delta \gamma^{\prime} \delta^{\prime}}(K) \\
& \cdot \tilde{t}_{(12) \gamma^{\prime} \delta^{\prime}}^{(2)} f_{(12)}^{\left(f_{2}\right)} B_{3}\left(Q_{\Psi \gamma X}\right), \tag{136}\\
& \left\langle\gamma 2^{-+} \mid\left(a_{2} \pi\right) 3\right\rangle=q_{\mu} S_{\nu \gamma} p_{\psi \delta \delta} P^{(2) \gamma \delta \gamma^{\prime} \delta^{\prime}}(K) \\
& \quad \cdot B_{3}\left(Q_{\Psi \gamma X}\right)\left[\tilde{t}_{(23) \gamma^{\prime} \delta^{\prime}}^{(2)} f_{(23)}^{\left(a_{2}\right)}+\tilde{t}_{(13) \gamma^{\prime} \delta^{\prime}}^{(2)} f_{(13)}^{\left(a_{2}\right)}\right] \tag{137}
\end{align*}
$$

with $S_{\mu \nu}$ defined as in eq. (107).

$3.3 \psi \rightarrow \gamma \mathrm{~K} \overline{\mathrm{~K}} \pi$

Possible intermediate channels for this process are $K^{*} K$, $K_{0}^{*} K, K_{2}^{*} K, a_{0} \pi, a_{2} \pi$. The formulae for $K_{0}^{*} K, K_{2}^{*} K, a_{0} \pi$, $a_{2} \pi$ intermediate states to the $K \bar{K} \pi$ final state are the same as for the $a_{0} \pi, a_{2} \pi, f_{0} \eta, f_{2} \eta$ intermediate states given in the previous subsection for the $\pi^{+} \pi^{-} \eta$ final state. So, here we only give partial-wave amplitudes $U_{\mu \nu}^{i}$ with $K^{*} K$ intermediate states. We denote K, \bar{K}, π as particle 1, 2, 3:

$$
\begin{align*}
& \left\langle\gamma 0^{-+} \mid\left(K^{*} K\right) 1\right\rangle=S_{\mu \nu} B_{1}\left(Q_{\psi \gamma X}\right) \\
& \quad \cdot\left[\tilde{t}_{\left(K^{*} \bar{K}\right) \lambda}^{(1)} \tilde{t}_{(13)}^{(1) \lambda} f_{(13)}^{\left(K^{*}\right)}+\tilde{t}_{\left(K^{*} \bar{K}\right) \lambda}^{(2)} \tilde{t}_{(23)}^{(1) \lambda} f_{(23)}^{\left(K^{*}\right)}\right], \tag{138}\\
& \left\langle\gamma 1^{+++} \mid\left(K^{*} K\right) 1\right\rangle=\epsilon_{\mu \nu \alpha \beta} p_{\psi}^{\alpha}\left[\tilde{t}_{(23)}^{(1) \beta} f_{(23)}^{\left(K^{*}\right)}+\tilde{t}_{(13)}^{(1) \beta} f_{(13)}^{\left(K^{*}\right)}\right], \tag{139}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\gamma 1^{++} \mid\left(K^{*} K\right) 2\right\rangle=q_{\mu} S_{\nu \beta} B_{2}\left(Q_{\psi \gamma X}\right) \\
& \quad \cdot\left[\tilde{t}_{(23)}^{(1) \beta} f_{(23)}^{\left(K^{*}\right)}+\tilde{t}_{(13)}^{(1) \beta} f_{(13)}^{\left(K^{*}\right)}\right], \tag{140}\\
& \left\langle\gamma 1^{-+} \mid\left(K^{*} K\right) 1\right\rangle=g_{\mu \nu} S_{\gamma \delta}\left[\tilde{t}_{\left(K^{*} \bar{K}\right)}^{(1) \gamma} \tilde{t}_{(13)}^{(1) \delta} f_{(13)}^{\left(K^{*}\right)}\right. \\
& \left.\quad+\tilde{t}_{\left(\bar{K}^{*} K\right)}^{(1) \gamma} \tilde{t}_{(23)}^{(1) \delta} f_{(23)}^{\left(K^{*}\right)}\right] B_{1}\left(Q_{\psi \gamma X}\right), \tag{141}\\
& \left\langle\gamma 1^{-+} \mid\left(K^{*} K\right) 2\right\rangle=q_{\mu} \epsilon_{\nu \beta \gamma \delta} K^{\beta}\left[\tilde{t}_{\left(K^{*} \bar{K}\right)}^{(1) \gamma} \tilde{t}_{(13)}^{(1) \delta} f_{(13)}^{\left(K^{*}\right)}\right. \\
& \left.\quad+\tilde{t}_{\left(\bar{K}^{*} K\right)}^{(1) \gamma} \tilde{t}_{(23)}^{(1) \delta} f_{(23)}^{\left(K^{*}\right)}\right] B_{1}\left(Q_{\psi \gamma X}\right) . \tag{142}
\end{align*}
$$

$3.4 \psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

Listed here are formulae used in refs. $[8,14]$:

$$
\begin{align*}
& \left\langle\gamma 0^{-+} \mid \rho \rho\right\rangle=S_{\mu \nu} \epsilon_{\gamma \delta \lambda \sigma} p_{1}^{\gamma} p_{2}^{\delta} p_{3}^{\lambda} p_{4}^{\sigma} B_{1}\left(Q_{\psi \gamma X}\right) \\
& \cdot\left[f_{(12)}^{(\rho)} f_{(34)}^{(\rho)} B_{1}\left(Q_{\rho 12}\right) B_{1}\left(Q_{\rho 34}\right) B_{1}\left(Q_{X(12)(34)}\right)\right. \\
& \left.-f_{(14)}^{(\rho)} f_{(32)}^{(\rho)} B_{1}\left(Q_{\rho 14}\right) B_{1}\left(Q_{\rho 32}\right) B_{1}\left(Q_{X(14)(32)}\right)\right], \tag{143}\\
& \left\langle\gamma 0^{++} \mid \sigma \sigma\right\rangle=g_{\mu \nu}\left[f_{(12)}^{(\sigma)} f_{(34)}^{(\sigma)}+f_{(14)}^{(\sigma)} f_{(32)}^{(\sigma)}\right], \tag{144}\\
& \left\langle\gamma 0^{++} \mid \rho \rho\right\rangle=g_{\mu \nu}\left[f_{(12)}^{(\rho)} f_{(34)}^{(\rho)}\left(q_{(12)} \cdot q_{(34)}\right) B_{1}\left(Q_{\rho 12}\right) B_{1}\left(Q_{\rho 34}\right)\right. \\
& \left.+f_{(14)}^{(\rho)} f_{(32)}^{(\rho)}\left(q_{(14)} \cdot q_{(32)}\right) B_{1}\left(Q_{\rho 14}\right) B_{1}\left(Q_{\rho 32}\right)\right], \tag{145}\\
& \left\langle\gamma 0^{++} \mid \pi \pi^{\prime}(\pi \sigma)\right\rangle=g_{\mu \nu}\left[f_{(123)}^{\left(\pi^{\prime}\right)}\left(f_{(12)}^{(\sigma)}+f_{(32)}^{(\sigma)}\right)\right. \\
& +f_{(234)}^{\left(\pi^{\prime}\right)}\left(f_{(23)}^{(\sigma)}+f_{(34)}^{(\sigma)}\right)+f_{(143)}^{\left(\pi^{\prime}\right)}\left(f_{(14)}^{(\sigma)}\right. \\
& \left.\left.+f_{(34)}^{(\sigma)}\right)+f_{(214)}^{\left(\pi^{\prime}\right)}\left(f_{(21)}^{(\sigma)}+f_{(14)}^{(\sigma)}\right)\right], \tag{146}\\
& \left\langle\gamma 0^{++} \mid \pi \pi^{\prime}(\pi \rho)\right\rangle=g_{\mu \nu}\left[f_{(123)}^{\left(\pi^{\prime}\right)} f_{(12)}^{(\rho)} q_{(12) \alpha}\left(p_{3}-p_{(12)}\right)^{\alpha}\right. \\
& \cdot B_{1}\left(Q_{\pi^{\prime} \rho 3}\right) B_{1}\left(Q_{\rho 12}\right)+f_{(234)}^{\left(\pi^{\prime}\right)} f_{(23)}^{(\rho)} q_{(23) \gamma}\left(p_{4}-p_{(23)}\right)^{\gamma} \\
& \cdot B_{1}\left(Q_{\pi^{\prime} \rho 4}\right) B_{1}\left(Q_{\rho 23}\right)+\{1 \leftrightarrow 3\}+\{2 \leftrightarrow 4\} \\
& +\{1 \leftrightarrow 3 \& 2 \leftrightarrow 4\}], \tag{147}\\
& \left\langle\gamma 0^{++} \mid \pi a_{1}(\pi \rho)\right\rangle=g_{\mu \nu}\left[P_{\alpha \beta}^{(1)}\left(p_{(123)}\right) p_{4}^{\alpha} q_{(12)}^{\beta} f_{(123)}^{\left(a_{1}\right)} f_{(12)}^{(\rho)}\right. \\
& \cdot B_{1}\left(Q_{X a_{1} 4}\right) B_{1}\left(Q_{\rho 12}\right)+P_{\alpha \beta}^{(1)}\left(p_{(234)}\right) p_{1}^{\alpha} q_{(23)}^{\beta} f_{(234)}^{\left(a_{1}\right)} f_{(23)}^{(\rho)} \\
& \cdot B_{1}\left(Q_{X a_{1} 1}\right) B_{1}\left(Q_{\rho 23}\right)+\{1 \leftrightarrow 3\}+\{2 \leftrightarrow 4\} \\
& +\{1 \leftrightarrow 3 \& 2 \leftrightarrow 4\}], \tag{148}\\
& \left\langle\gamma 2^{++} \mid(y y) 1\right\rangle=X_{\mu \nu}^{(y y)}, \tag{149}\\
& \left\langle\gamma 2^{++} \mid(y y) 2\right\rangle=g_{\mu \nu} p_{\psi}^{\alpha} p_{\psi}^{\beta} X_{\alpha \beta}^{(y y)} B_{2}\left(Q_{\psi X \gamma}\right), \tag{150}\\
& \left\langle\gamma 2^{++} \mid(y y) 3\right\rangle=q_{\mu} X_{\nu \alpha}^{y y} p_{\psi}^{\alpha} B_{2}\left(Q_{\psi X \gamma}\right), \tag{151}\\
& \left\langle 2^{++} \mid\left(f_{2} \sigma\right) 1\right\rangle=P_{\mu \nu \alpha \beta}^{(2)}(K) \tilde{t}_{(12)}^{\alpha \beta} f_{(12)}^{\left(f_{2}\right)} f_{(34)}^{(\sigma)} \\
& +\{1 \leftrightarrow 3\}+\{2 \leftrightarrow 4\}+\{1 \leftrightarrow 3 \& 2 \leftrightarrow 4\}, \tag{152}\\
& \left\langle\gamma 2^{++} \mid\left(f_{2} \sigma\right) 2\right\rangle=g_{\mu \nu} p_{\psi}^{\alpha} p_{\psi}^{\beta} P_{\alpha \beta \gamma \delta}^{(2)}(K) \tilde{t}_{(12)}^{(2) \gamma \delta} f_{(12)}^{\left(f_{2}\right)} f_{(34)}^{(\sigma)} \\
& \cdot B_{2}\left(Q_{\psi X \gamma}\right)+\{1 \leftrightarrow 3\}+\{2 \leftrightarrow 4\}+\{1 \leftrightarrow 3 \& 2 \leftrightarrow 4\}, \tag{153}
\end{align*}
$$

$$
\begin{align*}
& \left\langle\gamma 2^{++} \mid\left(f_{2} \sigma\right) 3\right\rangle=q_{\mu} p_{\psi}^{\beta} P_{\nu \beta \gamma \delta}^{(2)}(K) \tilde{t}_{(12)}^{(2) \gamma \delta} f_{(12)}^{\left(f_{2}\right)} f_{(34)}^{(\sigma)} \\
& \quad \cdot B_{2}\left(Q_{\psi X \gamma}\right)+\{1 \leftrightarrow 3\}+\{2 \leftrightarrow 4\}+\{1 \leftrightarrow 3 \& 2 \leftrightarrow 4\} \tag{154}
\end{align*}
$$

The amplitudes involving X-particles of $J^{P}=2^{++}$ involve a rank-two tensor, $X^{(y y)}$. The definition of this is given below:

$$
\begin{align*}
X_{\mu \nu}^{(\sigma \sigma)}= & f_{(12)}^{(\sigma)} f_{(34)}^{(\sigma)} B_{2}\left(Q_{X(12)(34)}\right) P_{\mu \nu \alpha \beta}^{(2)}(K) \\
& \cdot\left(p_{(12)}^{\alpha}-p_{(34)}^{\alpha}\right)\left(p_{(12)}^{\beta}-p_{(34)}^{\beta}\right)+\{2 \leftrightarrow 4\}, \tag{155}\\
X_{\mu \nu}^{(\rho \rho)}= & f_{(12)}^{(\rho)} f_{(34)}^{(\rho)} B_{1}\left(Q_{\rho 12}\right) B_{1}\left(Q_{\rho 34}\right) \\
& \cdot P_{\mu \nu \alpha \beta}^{(2)}(K) \tilde{t}_{(12)}^{(1) \alpha} \tilde{t}_{(34)}^{(1) \beta}+\{2 \leftrightarrow 4\}, \tag{156}
\end{align*}
$$

where the $L=2$ decay for $X \rightarrow \rho \rho$ is ignored in view of the centrifugal barrier suppression.

From the flux tube model for hybrids, 1^{-+}hybrids with $I=0$ decay dominantly into 4π through $a_{1} \pi$. Then $\psi \rightarrow \gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$is an ideal place for finding 1^{-+}hybrids. With high-statistics data at BES and CLEO-C, one should look for the isoscalar 1^{-+}hybrid in this channel. Here we add the formulae for the 1^{-+}hybrid production:

$$
\begin{align*}
& \left\langle\gamma 1^{-+} \mid\left[\pi a_{1}(\rho \pi)\right] 1\right\rangle=g_{\mu \nu} p_{\psi}^{\alpha} P_{\alpha \beta}^{(1)}(K) \\
& \quad \cdot\left[P^{(1) \beta \gamma}\left(p_{(123)}\right) \tilde{t}_{(12) \gamma}^{(1)} f_{(123)}^{\left(a_{1}\right)} f_{(12)}^{(\rho)}\right. \\
& \left.\quad+P^{(1) \beta \gamma}\left(p_{(234)}\right) \tilde{t}_{(23) \gamma}^{(1)} f_{(234)}^{\left(a_{1}\right)} f_{(23)}^{(\rho)}\right] \\
& \quad+\{1 \leftrightarrow 3\}+\{2 \leftrightarrow 4\}+\{1 \leftrightarrow 3 \& 2 \leftrightarrow 4\}, \tag{157}\\
& \left\langle\gamma 1^{-+} \mid\left[\pi a_{1}(\rho \pi)\right] 2\right\rangle=q_{\mu} P_{\nu \beta}^{(1)}(K) \\
& \quad \cdot\left[P^{(1) \beta \gamma}\left(p_{(123)}\right) \tilde{t}_{(12) \gamma}^{(1)} f_{(123)}^{\left(a_{1}\right)} f_{(12)}^{(\rho)}\right. \\
& \left.\quad+P^{(1) \beta \gamma}\left(p_{(234)}\right) \tilde{t}_{(23) \gamma}^{(1)} f_{(234)}^{\left(a_{1}\right)} f_{(23)}^{(\rho)}\right] \\
& \quad+\{1 \leftrightarrow 3\}+\{2 \leftrightarrow 4\}+\{1 \leftrightarrow 3 \& 2 \leftrightarrow 4\} \tag{158}
\end{align*}
$$

$3.5 \psi \rightarrow \gamma \mathbf{K}^{+} \mathbf{K}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

We construct the amplitudes $U_{\mu \nu}^{i}$ with a notation similar to that in the previous subsection for the $\psi \rightarrow$ $\gamma \pi^{+} \pi^{-} \pi^{+} \pi^{-}$channel. Here we denote $K^{+}, K^{-}, \pi^{+}, \pi^{-}$ as $1,2,3,4$:

$$
\begin{align*}
\left\langle\gamma 0^{-+} \mid K^{*} \bar{K}^{*}\right\rangle= & S_{\mu \nu} \epsilon_{\gamma \delta \lambda \sigma} p_{1}^{\gamma} p_{2}^{\delta} p_{3}^{\lambda} p_{4}^{\sigma} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{\left(\bar{K}^{*}\right)} \\
& B_{1}\left(Q_{\psi \gamma X)} B_{1}\left(Q_{K^{*} 14}\right)\right. \\
& \cdot B_{1}\left(Q_{\bar{K}^{*} 23}\right) B_{1}\left(Q_{X(14)(23)}\right), \tag{159}\\
\left\langle\gamma 0^{++} \mid \kappa \kappa\right\rangle= & g_{\mu \nu} f_{(14)}^{(\kappa)} f_{(23)}^{(\kappa)}, \tag{160}\\
\left\langle\gamma 0^{++} \mid K^{*} \bar{K}^{*}\right\rangle= & g_{\mu \nu} \tilde{t}_{(14) \alpha}^{(1)} \tilde{t}_{(23) \alpha}^{(1)} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{\left(K^{*}\right)}, \tag{161}\\
\left\langle\gamma 0^{++} \mid K^{*} \kappa\right\rangle= & g_{\mu \nu}\left(\tilde{t}_{\left(K^{*} \bar{\kappa}\right) \alpha}^{(1)} \tilde{t}_{(14)}^{(1) \alpha} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{(\kappa)}\right. \\
& \left.+\tilde{t}_{\left(\bar{K}^{*} \kappa\right) \alpha}^{(1)} \tilde{t}_{(23)}^{(1) \alpha} f_{(23)}^{\left(K^{*}\right)} f_{(14)}^{(\kappa)}\right], \tag{162}
\end{align*}
$$

$$
\begin{align*}
\left\langle\gamma 1^{++} \mid\left(K^{*} \bar{K}^{*}\right) 1\right\rangle= & \epsilon_{\mu \nu \lambda \alpha} p_{\psi}^{\lambda} \epsilon^{\alpha \beta \gamma \delta} K_{\beta} \\
& \cdot \tilde{t}_{(14) \gamma}^{(1)} \tilde{t}_{(23) \delta}^{(1)} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{\left(\bar{K}^{*}\right)}, \tag{163}\\
\left\langle\gamma 1^{++} \mid\left(K^{*} \bar{K}^{*}\right) 2\right\rangle= & q_{\mu} S_{\nu \alpha} \epsilon^{\alpha \beta \gamma \delta} K_{\beta} \tilde{t}_{(14) \gamma}^{(1)} \tilde{t}_{(23) \delta}^{(1)} \\
& \cdot f_{(14)}^{\left(K^{*}\right)} f_{\left(\bar{K}^{*}\right)}^{\left(\bar{K}_{2}\right)} B_{2}\left(Q_{\psi \gamma X)},\right. \tag{164}\\
\left\langle\gamma 1^{++} \mid\left(K^{*} \kappa\right) 1\right\rangle= & \epsilon_{\mu \nu \lambda \alpha} p_{\psi}^{\lambda} \epsilon^{\alpha \beta \gamma \delta} p_{X \beta} \\
& \cdot\left[\tilde{t}_{\left(K^{*} \bar{\kappa}\right) \gamma}^{(1)} \tilde{t}_{(14) \delta}^{(1)} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{(\kappa)}\right. \\
& \left.+\tilde{t}_{\left(\bar{K}^{*} \kappa\right) \gamma}^{(1)} \tilde{t}_{(23) \delta}^{(1)} f_{(23)}^{\left(K^{*}\right)} f_{(14)}^{(\kappa)}\right], \tag{165}\\
\left\langle\gamma 1^{++} \mid\left(K^{*} \kappa\right) 2\right\rangle= & q_{\mu} S_{\nu \alpha} \epsilon^{\alpha \beta \gamma \delta} p_{X \beta} \\
& \cdot\left[\tilde{t}_{\left(K^{*} \bar{\kappa}\right) \gamma}^{(1)} \tilde{t}_{(14) \delta}^{(1)} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{(\kappa)}+\tilde{t}_{\left(\bar{K}^{*} \kappa\right) \gamma}^{(1)}\right. \\
& \cdot \tilde{t}_{(23) \delta}^{(1)} f_{(23)}^{\left(K^{*}\right)} f_{(14)}^{(\kappa)} B_{2}\left(Q_{\psi \gamma X)},,\right. \tag{166}\\
\left\langle\gamma 2^{++} \mid(y z) 1\right\rangle= & X_{\mu \nu}^{(y z)}, \tag{167}\\
\left\langle\gamma 2^{++} \mid(y z) 2\right\rangle= & g_{\mu \nu} p_{\psi}^{\alpha} p_{\psi}^{\beta} X_{\alpha \beta}^{(y z)} B_{2}\left(Q_{\psi \gamma X)},\right. \tag{168}\\
\left\langle\gamma 2^{++} \mid(y z) 3\right\rangle= & q_{\mu} p_{\psi}^{\alpha} X_{\alpha \nu}^{(y z)} B_{2}\left(Q_{\psi \gamma X)},\right. \tag{169}\\
\left\langle\gamma 4^{++} \mid(y y) 1\right\rangle= & Z_{\mu \nu \lambda \sigma}^{(y)} p_{\psi}^{\lambda} p_{\psi}^{\sigma} B_{2}\left(Q_{\psi \gamma X)},\right. \tag{170}\\
\left\langle\gamma 4^{++} \mid(y y) 2\right\rangle= & g_{\mu \nu} p_{\psi}^{\alpha} p_{\psi}^{\beta} p_{\psi}^{\gamma} p_{\psi}^{\delta} Z_{\alpha \beta \gamma \delta}^{(y y)} B_{4}\left(Q_{\psi \gamma X)},,(171\right. \tag{171}\\
\left\langle\gamma 4^{++} \mid(y y) 3\right\rangle= & q_{\mu} Z_{\nu \lambda \sigma \alpha}^{(y y)} p_{\psi}^{\lambda} p_{\psi}^{\sigma} p_{\psi}^{\alpha} B_{4}\left(Q_{\psi \gamma X)},\right. \tag{172}
\end{align*},(172
$$

with $S_{\mu \nu}$ defined as in eq. (107). The amplitudes involving X-particles of $J^{P}=2^{+}$involve a rank-two tensor, $X^{(y z)}$. The definition of this is given below:

$$
\begin{align*}
& X_{\mu \nu}^{(\kappa \kappa)}=\tilde{t}_{(\kappa \bar{\kappa}) \mu \nu}^{(2)} f_{(14)}^{(\kappa)} f_{(23)}^{(\kappa)}, \tag{179}\\
& X_{\mu \nu}^{\left(K^{*} \bar{K}^{*}\right)}=P_{\mu \nu \alpha \beta}^{(2)}(K) \tilde{t}_{(14)}^{(1) \alpha} \tilde{t}_{(23)}^{(1) \beta} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{\left(\bar{K}^{*}\right)} \text {, } \tag{180}\\
& X_{\mu \nu}^{\left(K^{*} \kappa\right)}=P_{\mu \nu \alpha \beta}^{(2)}(K)\left[\tilde{t}_{\left(K^{*} \bar{\kappa}\right)}^{(1) \alpha} \tilde{t}_{(14)}^{(1) \beta} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{(\kappa)}\right. \\
& \left.+\tilde{t}_{\left(\bar{K}^{*} \kappa\right)}^{(1) \alpha} \tilde{t}_{(23)}^{(1) \beta} f_{(23)}^{\left(K^{*}\right)} f_{(14)}^{(\kappa)}\right], \tag{181}\\
& Z_{\alpha \beta \gamma \delta}^{(\kappa \kappa)}=\tilde{t}_{(\kappa \bar{\kappa}) \alpha \beta \gamma \delta}^{(4)} f_{(14)}^{(\kappa)} f_{(23)}^{(\kappa)}, \tag{182}\\
& Z_{\alpha \beta \gamma \delta}^{\left(K^{*} \bar{K}^{*}\right)}=P_{\alpha \beta \gamma \delta \alpha^{\prime} \beta^{\prime} \gamma^{\prime} \delta^{\prime}}^{(4)}(K) \tilde{t}_{\left(K^{*} \bar{K}^{*}\right)}^{(2) \alpha^{\prime} \beta^{\prime}} \\
& \text { - } \tilde{t}_{(14)}^{(1) \gamma^{\prime}} \tilde{t}_{(23)}^{(1) \delta^{\prime}} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{\left(\bar{K}^{*}\right)} \text {, } \tag{183}\\
& A_{\mu \nu}=P_{\mu \nu \alpha \alpha^{\prime}}^{(2)}(K) \epsilon^{\alpha \beta \gamma \delta} K_{\beta} \tilde{t}_{(14) \gamma}^{(1)} \tilde{t}_{(23) \delta}^{(1)} \\
& \text { - } \tilde{t}_{\left(K^{*} \bar{K}^{*}\right)}^{(1){ }^{\prime}} f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{\left(\bar{K}^{*}\right)} \text {, } \tag{184}\\
& B_{\mu \nu}=P_{\mu \nu \alpha \alpha^{\prime}}^{(2)}(K) \epsilon^{\alpha \beta \gamma \delta} K_{\beta} \tilde{t}_{\left(K^{*} \bar{K}^{*}\right) \gamma}^{(1)} \\
& \cdot\left(\tilde{t}_{(14) \delta}^{(1)} \tilde{t}_{(23)}^{(1) \alpha^{\prime}}+\tilde{t}_{(23) \delta}^{(1)} \tilde{\delta}_{(14)}^{(1) \alpha^{\prime}}\right) f_{(14)}^{\left(K^{*}\right)} f_{(23)}^{\left(\bar{K}^{*}\right)} \tag{185}
\end{align*}
$$

Fig. 1. Distortion on the Breit-Wigner amplitude squared by the s-dependence numerators: with $Q_{\psi \gamma f}^{2} B_{2}\left(Q_{\psi \gamma f}\right)$ (solid line), with $30.3 Q_{\psi \gamma f}^{4} B_{4}\left(Q_{\psi \gamma f}\right)$ (dotted line), $20\left[Q_{\psi \gamma f}^{2} B_{2}\left(Q_{\psi \gamma f}\right)\right.$ $\left.30.3 Q_{\psi \gamma f}^{4} B_{4}\left(Q_{\psi \gamma f}\right)\right]$ (dashed line).
where $A_{\mu \nu}$ corresponds to $2^{-+} \rightarrow K^{*} \bar{K}^{*}$ with $L=1$ and $S=1, B_{\mu \nu}$ corresponds to $2^{-+} \rightarrow K^{*} \bar{K}^{*}$ with $L=1$ and $S=2$. We ignore $2^{-+} \rightarrow K^{*} \bar{K}^{*}$ with $L=3$ due to a strong centrifugal barrier.

4 Discussion

Here we add some points of general technique in fitting the data. The first concerns the fact that tensor amplitudes are not always unique. As an example, in $J / \psi \rightarrow \gamma f_{2}$, there are three independent helicity amplitudes. But the general formalism allows one to write down five covariant tensor amplitudes. Those five are independent in the process $J / \psi \rightarrow \omega f_{2}$, but for the radiative decay, gauge invariance makes two of them dependent on the other three. Two further linear combinations differ from the first three only by a different s-dependence arising from the momentum dependence built into the tensor expressions. Chung [11] recommends using all five combinations, so as to retain the differences in the possible s-dependence. However, this gives rise to a practical problem.

One is usually fitting resonances such as f_{2} to the data. If two of the amplitudes differ from the others only in the s-dependence, this is equivalent to putting into the numerator of an f_{2} Breit-Wigner amplitude a linear combination of two s-dependent terms with two free parameters. This may lead to a zero amplitude at the resonance mass and can give rise to a structure which may lie 500 MeV or 1 GeV away from f_{2}; it may be easily confused with the effects of other resonances. This is illustrated in fig. 1 for the amplitude squared $|T|^{2}$ taking as an example $J / \psi \rightarrow \gamma f_{2}(1700) \rightarrow \gamma K \bar{K}$. For the
solid line, we use $T=Q_{\psi \gamma f}^{2} B_{2}\left(Q_{\psi \gamma f}\right) /\left(M_{f}^{2}-s-i M_{f} \Gamma_{f}\right)$ with $M_{f}=1.7 \mathrm{GeV}$ and $\Gamma_{f}=0.15 \mathrm{GeV}$; for the dotted line which lies very close to the solid line, we use $T=30.3 \cdot Q_{\psi \gamma f}^{4} B_{4}\left(Q_{\psi \gamma f}\right) /\left(M_{f}^{2}-s-i M_{f} \Gamma_{f}\right)$. The two different s-dependence numerators give a hardly visible difference in the line-shape of f_{2}. But if one allows two s-dependent terms in the numerator with two free parameters, a ridiculous shape (dashed line) could happen for a single resonance $f_{2}(1700)$; in this illustration we use $20\left[Q_{\psi \gamma f}^{2} B_{2}\left(Q_{\psi \gamma f}\right)-30.3 Q_{\psi \gamma f}^{4} B_{4}\left(Q_{\psi \gamma f}\right)\right]$ in the numerator. Although theoretically this possibility cannot be excluded, it is very odd and in practice one may end up fitting other 2^{++}components far away from the f_{2}-resonance mass with f_{2}. One therefore should be very careful in drawing conclusions from a fit using more than the minimum number of amplitudes with different angular dependence.

In J / ψ radiative decays, the $c \bar{c}$ pair annihilates to gluons. This requires a short-range interaction with a range of order $1 / m_{c}$, where m_{c} is the mass of the c-quark. Therefore the centrifugal barrier for $J / \psi \rightarrow \gamma X$ is strong. Some production with $L=1$ is observed (at momentum transfer $\leq 1 \mathrm{GeV} / c$), but we find little evidence for $L>1$.

We thank the Royal Society for funds allowing a collaboration between Queen Mary College, University of London and IHEP, Beijing. We thank V.V. Anisovich and A.V. Sarantsev for many helpful discussions. A small part of the formulae presented here were independently written and cross-checked by them. We thank L.Y. Dong, Z.J. Guo and J.L. Hu for the

Monte Carlo simulation of some formulae in this paper and for pointing out some typos. The work is partly supported by CAS Knowledge Innovation Project (KJCX2-SW-N02) and the National Natural Science Foundation of China under Grant no. 10225525.

References

1. R.A. Briere et al., Preprint CLNS-01-1742.
2. V.V. Anisovich, D.V. Bugg, A.V. Sarantsev, Nucl. Phys. A 537, 501 (1992); V.V. Anisovich et al., Nucl. Phys. A 544, 747 (1992).
3. A.V. Anisovich et al., Phys. Lett. B 452, 173; 180; 187 (1999); 468, 304; 309 (1999); 500, 222 (2001); 507, 23 (2001).
4. A.V. Anisovich, V.A. Sadovnikova, Eur. Phys. J. A 2, 199 (1998); A.V. Anisovich et al., J. Phys. G 28, 15 (2002).
5. BES Collaboration, Phys. Lett. B 440, 217 (1998).
6. BES Collaboration, Phys. Lett. B 446, 356 (1999).
7. BES Collaboration, Phys. Lett. B 472, 200 (2000).
8. BES Collaboration, Phys. Lett. B 472, 208 (2000).
9. BES Collaboration, Phys. Lett. B 476, 25 (2000).
10. W. Rarita, J. Schwinger, Phys. Rev. 60, 61 (1941); E. Behtends, C. Fronsdal, Phys. Rev. 106, 345 (1957).
11. S.U. Chung, Phys. Rev. D 48, 1225 (1993); 57, 431 (1998).
12. F. von Hippel, C. Quigg, Phys. Rev. D 5, 624 (1972).
13. W. Greiner et al., Quantum Chromodynamics (Springer, Heidelberg, 2002) p. 242.
14. D.V. Bugg et al., Phys. Lett. B 353, 378 (1995).

[^0]: ${ }^{\text {a }}$ e-mail: zoubs@mail.ihep.ac.cn

